scholarly journals Novel Dengue Virus NS2B/NS3 Protease Inhibitors

2014 ◽  
Vol 59 (2) ◽  
pp. 1100-1109 ◽  
Author(s):  
Hongmei Wu ◽  
Stefanie Bock ◽  
Mariya Snitko ◽  
Thilo Berger ◽  
Thomas Weidner ◽  
...  

ABSTRACTDengue fever is a severe, widespread, and neglected disease with more than 2 million diagnosed infections per year. The dengue virus NS2B/NS3 protease (PR) represents a prime target for rational drug design. At the moment, there are no clinical PR inhibitors (PIs) available. We have identified diaryl (thio)ethers as candidates for a novel class of PIs. Here, we report the selective and noncompetitive inhibition of the serotype 2 and 3 dengue virus PRin vitroand in cells by benzothiazole derivatives exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Inhibition of replication of DENV serotypes 1 to 3 was specific, since all substances influenced neither hepatitis C virus (HCV) nor HIV-1 replication. Molecular docking suggests binding at a specific allosteric binding site. In addition to thein vitroassays, a cell-based PR assay was developed to test these substances in a replication-independent way. The new compounds inhibited the DENV PR with IC50s in the low-micromolar or submicromolar range in cells. Furthermore, these novel PIs inhibit viral replication at submicromolar concentrations.

2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S411-S412
Author(s):  
Edward P Garvey ◽  
Andrew Sharp ◽  
Peter Warn ◽  
Christopher M Yates ◽  
Robert J Schotzinger

Abstract Background VT-1598 is a novel fungal CYP51 inhibitor with potent in vitro activity against yeast, mold, and endemic pathogenic fungi (Wiederhold, JAC, 2017). Its tetrazole-based rational drug design imparts much greater selectivity vs. human CYPs (Yates, BMCL, 2017), which could reduce human CYP-related side effects and DDIs. We report here VT-1598’s in vivo activity in an invasive aspergillosis (IA) model. Methods MIC was determined as outlined in CLSI M38-A2. Plasma PK was measured after 4 days of oral doses in neutropenic ICR mice without fungal inoculation. In vivo antifungal activity was determined in a tail-vein IA model in neutropenic mice inoculated with A. fumigatus (AF) ATCC 204305 (N = 10 per dose). Two separate studies were conducted, with oral VT-1598 treatment starting either 48 hours prior (prophylaxis) or 5 hours postinoculation (delayed), with 4 days of postinoculation dosing, and kidney fungal burden measured 1 day post last dose by both CFU and qPCR. Drug control was 10 mg/kg AmBisome i.v. Results The MIC for VT-1598 against AF 204305 was 0.25 μg/mL. The plasma PK of VT-1598 was linearly proportional between the 5 and 40 mg/kg once-daily doses, with AUCs of 155 and 1,033 μg h/mL for the two doses, respectively. VT-1598 was similarly effective in reducing fungal burden when given in delayed treatment compared with prophylaxis, and both studies demonstrated a full dose–response (i.e., no to full reduction of fungal burden). When comparing fungal burdens of each dose group to the fungal burden at the start of treatment, the dose of VT-1598 to achieve fungal stasis ranged from 20.5 to 25.9 mg/kg and to achieve a 1-log10 fungal kill ranged from 30.9 to 50.5 mg/kg. Using the previously measured mouse plasma binding (>99.9%), the free AUC /MIC values for stasis and 1-log10 kill ranged from 2.1–2.7 and 3.2–5.2, respectively. These values are within the range of 1–11 that have been reported for posaconazole and isavuconazole (Lepak, AAC, 2013). Conclusion VT-1598 had potent antifungal activity in a murine model of IA. The PK/PD relationship was the same as clinically used mold-active CYP51 agents, suggesting that it could have similar clinical efficacy. If correct, the tetrazole-based greater selectivity may significantly differentiate VT-1598 from current IA therapies. Disclosures E. P. Garvey, Viamet Pharmaceuticals, Inc.: Employee, Salary. A. Sharp, Evotec (UK) Ltd.: Employee, Salary. P. Warn, Evotec (UK) Ltd.: Employee, Salary. C. M. Yates, Viamet Pharmaceuticals, Inc.: Employee, Salary. R. J. Schotzinger, Viamet Pharmaceuticals, Inc.: Board Member and Employee, Salary.


Author(s):  
Yunqiu Pu ◽  
Fengxia Sun ◽  
Rongli Sun ◽  
Zhaodi Man ◽  
Shuangbin Ji ◽  
...  

Benzene, a commonly used chemical, has been confirmed to specifically affect the hematopoietic system as well as overall human health. PTP4A3 is overexpressed in leukemia cells and is related to cell proliferation. We previously found that HIF-1alpha was involved in benzene toxicity and PTP4A3 may be the target gene of HIF-1alpha via ChIP-seq. The aim of this study is to confirm the relationship between HIF-1alpha and PTP4A3 in benzene toxicity, as well as the function of PTP4A3 on cell toxicity induced by 1,4-benzoquinone (1,4-BQ). Our results indicate that HIF-1alpha could regulate PTP4A3 with in vivo and in vitro experiments. A cell line with suppressed PTP4A3 was established to investigate the function of PTP4A3 in 1,4-BQ toxicity in vitro. The results revealed that cell proliferation inhibition was more aggravated in PTP4A3 low-expression cells than in the control cells after 1,4-BQ treatment. The relative oxygen species (ROS) significantly increased in cells with inhibited PTP4A3, while the rise was inferior to the control cells at the 20 μM 1,4-BQ group. An increase in DNA damage was seen in PTP4A3 down-regulated cells at the 10 μM 1,4-BQ group, whereas the results reversed at the concentration of 20 μM. Moreover, the apoptosis rate increased higher in down-regulated PTP4A3 cells after 1,4-BQ exposure. In addition, PI3K/AKT pathway was significantly restrained in cells with inhibited PTP4A3 after 1,4-BQ treatment. Our results indicate that HIF-1alpha may regulate PTP4A3 to be involved in benzene toxicity. Inhibition of PTP4A3 could aggravate cell proliferation suppression and apoptosis by regulating PI3K/AKT pathway after 1,4-BQ treatment.


2014 ◽  
Vol 8 (07) ◽  
pp. 876-884 ◽  
Author(s):  
Diana Carolina Quintero-Gil ◽  
Marta Ospina ◽  
Jorge Emilio Osorio-Benitez ◽  
Marlen Martinez-Gutierrez

Introduction: Different dengue virus (DENV) serotypes have been associated with greater epidemic potential. In turn, the increased frequency in cases of severe forms of dengue has been associated with the cocirculation of several serotypes. Because Colombia is a country with an endemic presence of all four DENV serotypes, the aim of this study was to evaluate the in vivo and in vitro replication of the DENV-2 and DENV-3 strains under individual infection and coinfection conditions. Methodology: C6/36HT cells were infected with the two strains individually or simultaneously (coinfection). Replication capacity was evaluated by RT-qPCR, and the effects on cell viability were assessed with an MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Additionally, Aedes aegypti mosquitoes were artificially fed the two strains of each serotype individually or simultaneously. The viral genomes were quantified by RT-qPCR and the survival of the infected mosquitoes was compared to that of uninfected controls. Results: In single infections, three strains significantly affected C6/36HT cell viability, but no significant differences were found in the replication capacities of the strains of the same serotype. In the in vivo infections, mosquito survival was not affected, and no significant differences in replication between strains of the same serotype were found. Finally, in coinfections, serotype 2 replicated with a thousandfold greater efficiency than serotype 3 did both in vitro and in vivo. Conclusions: Due to the cocirculation of serotypes in endemic regions, further studies of coinfections in a natural environment would further an understanding of the transmission dynamics that affect DENV infection epidemiology.


1989 ◽  
Vol 9 (5) ◽  
pp. 593-604 ◽  
Author(s):  
Raul N. Ondarza

More than a dozen enzymes have been found to be activated or inhibited in vitro by disulfide-exchange between the protein and small-molecule disulfides. Accordingly, thiol/disulfide ratio changes in vivo may be of great importance in the regulation of cellular metabolism. An awareness of this regulatory mechanism in both host cells and parasites, coupled with information on the presence or absence of key enzymes, may lead to rational drug design against certain diseases involving thiol intermediates, including trypanosomiasis.


2008 ◽  
Vol 83 (2) ◽  
pp. 993-1008 ◽  
Author(s):  
María F. Lodeiro ◽  
Claudia V. Filomatori ◽  
Andrea V. Gamarnik

ABSTRACT The 5′ untranslated region (5′UTR) of the dengue virus (DENV) genome contains two defined elements essential for viral replication. At the 5′ end, a large stem-loop (SLA) structure functions as the promoter for viral polymerase activity. Next to the SLA, there is a short stem-loop that contains a cyclization sequence known as the 5′ upstream AUG region (5′UAR). Here, we analyzed the secondary structure of the SLA in solution and the structural requirements of this element for viral replication. Using infectious DENV clones, viral replicons, and in vitro polymerase assays, we defined two helical regions, a side stem-loop, a top loop, and a U bulge within SLA as crucial elements for viral replication. The determinants for SLA-polymerase recognition were found to be common in different DENV serotypes. In addition, structural elements within the SLA required for DENV RNA replication were also conserved among different mosquito- and tick-borne flavivirus genomes, suggesting possible common strategies for polymerase-promoter recognition in flaviviruses. Furthermore, a conserved oligo(U) track present downstream of the SLA was found to modulate RNA synthesis in transfected cells. In vitro polymerase assays indicated that a sequence of at least 10 residues following the SLA, upstream of the 5′UAR, was necessary for efficient RNA synthesis using the viral 3′UTR as template.


2000 ◽  
Vol 81 (9) ◽  
pp. 2183-2188 ◽  
Author(s):  
Andrea Sbardellati ◽  
Elisa Scarselli ◽  
Viviana Amati ◽  
Sabrina Falcinelli ◽  
Alexander S. Kekulé ◽  
...  

The identification of antivirals and vaccines against hepatitis C virus (HCV) infection is hampered by the lack of convenient animal models. The need to develop surrogate models has recently drawn attention to GB virus B (GBV-B), which produces hepatitis in small primates. In a previous study in vitro, it was shown that GBV-B NS3 protease shares substrate specificity with the HCV enzyme, known to be crucial for virus replication. In this report, GBV-B NS3 activity on GBV-B precursor proteins has been analysed in a cell-based system. It is shown that mature protein products are obtained that are compatible with the cleavage sites proposed on the basis of sequence homology with HCV and that GBV-B NS4A protein is required as a cofactor for optimal enzymatic activity. Experiments in vitro supported by a structural model mapped the region of NS4A that interacts with NS3 and showed that the GBV-B cofactor cannot be substituted for by its HCV analogue.


Nanoscale ◽  
2020 ◽  
Vol 12 (16) ◽  
pp. 9124-9132 ◽  
Author(s):  
Candace E. Benjamin ◽  
Zhuo Chen ◽  
Olivia R. Brohlin ◽  
Hamilton Lee ◽  
Arezoo Shahrivarkevishahi ◽  
...  

The emergence of viral nanotechnology over the preceding two decades has created a number of intellectually captivating possible translational applications; however, the in vitro fate of the viral nanoparticles in cells remains an open question.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shiv Bharadwaj ◽  
Kyung Eun Lee ◽  
Vivek Dhar Dwivedi ◽  
Umesh Yadava ◽  
Aleksha Panwar ◽  
...  

AbstractDengue virus (DENV) infection causes serious health problems in humans for which no drug is currently available. Recently, DENV NS2B-NS3 protease has been proposed as a primary target for anti-dengue drug discovery due to its important role in new virus particle formation by conducting DENV polyprotein cleavage. Triterpenoids from the medicinal fungus Ganoderma lucidum have been suggested as pharmacologically bioactive compounds and tested as anti-viral agents against various viral pathogens including human immunodeficiency virus. However, no reports are available concerning the anti-viral activity of triterpenoids from Ganoderma lucidum against DENV. Therefore, we employed a virtual screening approach to predict the functional triterpenoids from Ganoderma lucidum as potential inhibitors of DENV NS2B-NS3 protease, followed by an in vitro assay. From in silico analysis of twenty-two triterpenoids of Ganoderma lucidum, four triterpenoids, viz. Ganodermanontriol (−6.291 kcal/mol), Lucidumol A (−5.993 kcal/mol), Ganoderic acid C2 (−5.948 kcal/mol) and Ganosporeric acid A (−5.983 kcal/mol) were predicted to be viral protease inhibitors by comparison to reference inhibitor 1,8-Dihydroxy-4,5-dinitroanthraquinone (−5.377 kcal/mol). These results were further studied for binding affinity and stability using the molecular mechanics/generalized Born surface area method and Molecular Dynamics simulations, respectively. Also, in vitro viral infection inhibition suggested that Ganodermanontriol is a potent bioactive triterpenoid.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Miyuki Suzawa ◽  
Diego A Miranda ◽  
Karmela A Ramos ◽  
Kenny K-H Ang ◽  
Emily J Faivre ◽  
...  

SUMO-modification of nuclear proteins has profound effects on gene expression. However, non-toxic chemical tools that modulate sumoylation in cells are lacking. Here, to identify small molecule sumoylation inhibitors we developed a cell-based screen that focused on the well-sumoylated substrate, human Liver Receptor Homolog-1 (hLRH-1, NR5A2). Our primary gene-expression screen assayed two SUMO-sensitive transcripts, APOC3 and MUC1, that are upregulated by SUMO-less hLRH-1 or by siUBC9 knockdown, respectively. A polyphenol, tannic acid (TA) emerged as a potent sumoylation inhibitor in vitro (IC50 = 12.8 µM) and in cells. TA also increased hLRH-1 occupancy on SUMO-sensitive transcripts. Most significantly, when tested in humanized mouse primary hepatocytes, TA inhibits hLRH-1 sumoylation and induces SUMO-sensitive genes, thereby recapitulating the effects of expressing SUMO-less hLRH-1 in mouse liver. Our findings underscore the benefits of phenotypic screening for targeting post-translational modifications, and illustrate the potential utility of TA for probing the cellular consequences of sumoylation.


2021 ◽  
Author(s):  
Afrooz Dabbaghizadeh ◽  
Alexandre Pare ◽  
Zacharie Cheng-Boivin ◽  
Robin Dagher ◽  
Sandra Minotti ◽  
...  

Autosomal Recessive Spastic Ataxia of the Charlevoix Saguenay (ARSACS), is caused by loss of function mutations in the SACS gene, which encodes sacsin, a giant protein of 520 kDa. A key feature of the absence of sacsin in cells is the formation of abnormal bundles of intermediate filaments (IF) including neurofilaments (NF) in neurons and vimentin IF in fibroblasts, suggesting a role of sacsin in IF homeostasis. Sacsin contains a J domain (SacsJ) homologous to Hsp40, that can interact with Hsp70 chaperones. The SacsJ domain resolved NF bundles in cultured Sacs-/- neurons, however, its mechanism is still unclear. Here, we focused on the role of SacsJ in NF assembly. We report that the SacsJ domain directly interacts with NF proteins in vitro to disassemble NFL filaments, and to inhibit their initial assembly, in the absence of Hsp70. We generated a cell-penetrating peptide derived from this domain, SacsJ-myc-TAT, which was efficient in disassembling both vimentin IF and NF in cultured fibroblasts and Sacs+/+ motor neurons as well as NF bundles in cultured Sacs-/- motor neurons. Whereas a normal NF network was restored in Sacs-/- neurons treated with the SacsJ peptide, there was some loss of IF networks in Sacs+/+ fibroblasts or neurons. These results suggest that SacsJ is a key regulator of NF and IF networks in cells, with implications for its therapeutic use.


Sign in / Sign up

Export Citation Format

Share Document