scholarly journals Multilaboratory Testing of Antifungal Drug Combinations against Candida Species and Aspergillus fumigatus: Utility of 100 Percent Inhibition as the Endpoint

2014 ◽  
Vol 59 (3) ◽  
pp. 1759-1766 ◽  
Author(s):  
Ping Ren ◽  
Ming Luo ◽  
Shao Lin ◽  
Mahmoud A. Ghannoum ◽  
Nancy Isham ◽  
...  

ABSTRACTFour laboratories tested three isolates ofCandidaspecies and two isolates ofAspergillus fumigatususing 96-well plates containing combinations of amphotericin B, anidulafungin, caspofungin, micafungin, fluconazole, itraconazole, posaconazole, and voriconazole. The majority of summation fractional inhibitory concentration indices (ΣFICI) based on the Lowe additivity formula suggested indifferent drug interactions (ΣFICI > 0.5 and ≤4.0) and no instance of drug antagonism (ΣFICI > 4.0). The intra- and interlaboratory agreement rates were superior when MIC100readings were used as endpoints (at a 99% confidence interval [CI]).

2017 ◽  
Vol 4 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Shivkrupa D. Halbandge ◽  
Supriya P. Mortale ◽  
Sankunny Mohan Karuppayil

Background: Biofilm formation by Candida albicans is a significant clinical challenge. Fungal biofilms are resistant to most of the currently available antifungal agents. Amphotericin-B (AmB) is an antifungal agent used for the treatment of systematic fungal infections but it is well known for its toxicities and side-effects. Novel approaches are needed to treat these infections that can reduce its toxicities. Objectives: Current study aims to evaluate the efficacy of silver nanoparticles (SNPs) alone and in combination with AmB against growth and biofilm formation in C. albicans. Methods: Combinations of SNP-AmB were tested against planktonic growth and biofilm formation in vitro. Micro broth dilution method was used to study planktonic growth and biofilm formation. The fractional inhibitory concentration indices (FICI) were calculated by using a checkerboard format. Biofilm formation was analyzed by using XTT-metabolic assay. Results: MIC of AmB for developing biofilm was lowered by 16 fold in combination with SNPs. The calculated fractional inhibitory concentration indices were 0.1875 suggesting that this interaction is synergistic. Similarly, the mature biofilms were significantly prevented by SNPs-AmB combination. This interaction was synergistic. Furthermore, interaction between SNPs and AmB against planktonic growth was additive. Hemolytic activity assay was carried out on these drugs and combinations. Drug required for inhibition alone as well as in combination did not exhibit hemolytic activity. Conclusion: The combinations with SNPs lead to decreases in the dosage of AmB required for anti-Candida activity. SNPs-AmB combination could be an effective strategy against biofilm formed by C. albicans.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
A. L. Bidaud ◽  
F. Botterel ◽  
A. Chowdhary ◽  
E. Dannaoui

ABSTRACT Candida auris is an emerging, multidrug-resistant pathogen responsible for invasive hospital-acquired infections. Flucytosine is an effective anti-Candida species drug, but which cannot be used as a monotherapy because of the risk of development of resistant mutants during treatment. It is, therefore, noteworthy to test possible combinations with flucytosine that may have a synergistic interaction. In this study, we determined the in vitro interaction between flucytosine and amphotericin B, micafungin, or voriconazole. These combinations have been tested against 15 C. auris isolates. The MIC ranges (geometric mean [Gmean]) of flucytosine, amphotericin B, micafungin, and voriconazole were 0.125 to 1 μg/ml (0.42 μg/ml), 0.25 to 1 μg/ml (0.66 μg/ml), 0.125 to 0.5 μg/ml (0.3 μg/ml), and 0.03 to 4 μg/ml (1.05 μg/ml), respectively. When tested in combination, indifferent interactions were mostly observed with fractional inhibitory concentration index values from 0.5 to 1, 0.31 to 1.01, and 0.5 to 1.06 for the combinations of flucytosine with amphotericin B, micafungin, and voriconazole, respectively. A synergy was observed for the strain CBS 10913 from Japan. No antagonism was observed for any combination. The combination of flucytosine with amphotericin B or micafungin may be relevant for the treatment of C. auris infections.


1998 ◽  
Vol 42 (8) ◽  
pp. 2002-2005 ◽  
Author(s):  
Melissa A. Visalli ◽  
Michael R. Jacobs ◽  
Peter C. Appelbaum

The present study examined the activities of trovafloxacin, levofloxacin, and ciprofloxacin, alone and in combination with cefoperazone, ceftazidime, cefpirome, and gentamicin, against 100 strains of Stenotrophomonas maltophilia by the MIC determination method and by synergy testing of the combinations by the time-kill and checkerboard titration methods for 20 strains. The respective MICs at which 50% and 90% of isolates were inhibited for the drugs used alone were as follows: trovafloxacin, 0.5 and 2.0 μg/ml; levofloxacin, 2.0 and 4.0 μg/ml; ciprofloxacin, 4.0 and 16.0 μg/ml; cefoperazone, >128.0 and >128.0 μg/ml; ceftazidime, 32.0 and >128.0 μg/ml; cefpirome, >128.0 and >128.0 μg/ml; and gentamicin, 128.0 and >128.0 μg/ml. Synergistic fractional inhibitory concentration indices (≤0.5) were found for ≥50% of strains for trovafloxacin-cefoperazone, trovafloxacin-ceftazidime, levofloxacin-cefoperazone, levofloxacin-ceftazidime, ciprofloxacin-cefoperazone, and ciprofloxacin-ceftazidime, with other combinations affecting fewer strains. For 20 strains tested by the checkerboard titration and time-kill methods, synergy (≥100-fold drop in count compared to the count achieved with the more active compound) was more pronounced after 12 h due to regrowth after 24 h. At 12 h, trovafloxacin at 0.004 to 0.5 μg/ml showed synergy with cefoperazone for 90% of strains, with ceftazidime for 95% of strains with cefpirome for 95% of strains, and with gentamicin for 65% of strains. Levofloxacin at 0.03 to 0.5 μg/ml and ciprofloxacin at 0.5 to 2.0 μg/ml showed synergy with cefoperazone for 80% of strains, with ceftazidime for 90 and 85% of strains, respectively, with cefpirome for 85 and 75% of strains, respectively, and with gentamicin for 65 and 75% of strains, respectively. Time-kill assays were more discriminatory than checkerboard titration assays in demonstrating synergy for all combinations.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Seyedmojtaba Seyedmousavi ◽  
Johan W. Mouton ◽  
Willem J. G. Melchers ◽  
Paul E. Verweij

ABSTRACT Using an immunocompetent murine model of invasive aspergillosis (IA), we previously reported that the efficacy of liposomal amphotericin B (L-AmB) (Ambisome) is not hampered by the presence of azole resistance mutations in Aspergillus fumigatus (S. Seyedmousavi, W. J. G. Melchers, J. W. Mouton, and P. E. Verweij, Antimicrob Agents Chemother 57:1866–1871, 2013, https://doi.org/10.1128/AAC.02226-12 ). We here investigated the role of immune suppression, i.e., neutropenia and steroid treatment, in L-AmB efficacy in mice infected with wild-type (WT) A. fumigatus and with azole-resistant A. fumigatus harboring a TR34/L98H mutation in the cyp-51A gene. Survival of treated animals at day 14 in both immunosuppressed models was significantly better than that of nontreated controls. A dose-response relationship was observed that was independent of the azole-resistant mechanism and the immunosuppression method used. In the neutropenic model, 100% survival was reached at an L-AmB dose of 16 mg/kg of body weight for the WT strain and the TR34/L98H isolate. In the steroid-treated group, 90.9% survival and 100% survival were achieved for the WT isolate and the TR34/L98H isolate with an L-AmB dose of 16 mg/kg, respectively. The 50% effective dose (ED50) was 1.40 mg/kg (95% confidence interval [CI], 0.66 to 3.00 mg/kg) for the WT isolate and 1.92 mg/kg (95% CI, 0.60 to 6.17 mg/kg) for the TR34/L98H isolate in the neutropenic model and was 2.40 mg/kg (95% CI, 1.93 to 2.97 mg/kg) for the WT isolate and 2.56 mg/kg (95% CI, 1.43 to 4.56 mg/kg) for the TR34/L98H isolate in the steroid-treated group. Overall, there were no significant differences between the two different immunosuppressed conditions in the efficacy of L-AmB against the wild-type and azole-resistant isolates (P > 0.9). However, the required L-AmB exposure was significantly higher than that seen in the immunocompetent model.


2015 ◽  
Vol 59 (11) ◽  
pp. 7097-7099 ◽  
Author(s):  
Lujuan Gao ◽  
Yi Sun

ABSTRACTAspergillusbiofilms were prepared fromAspergillus fumigatus,Aspergillus flavus, andAspergillus terreusvia a 96-well plate-based method, and the combined antifungal activity of tacrolimus with azoles or amphotericin B againstAspergillusbiofilms was investigated via a broth microdilution checkerboard technique system. Our results suggest that combinations of tacrolimus with voriconazole or amphotericin B have synergistic inhibitory activity againstAspergillusbiofilms. However, combinations of tacrolimus with itraconazole or posaconazole exhibit no synergistic or antagonistic effects.


2018 ◽  
Vol 56 (10) ◽  
Author(s):  
Hsuan-Chen Wang ◽  
Ming-I Hsieh ◽  
Pui-Ching Choi ◽  
Chi-Jung Wu

ABSTRACT This study compared the YeastOne and reference CLSI M38-A2 broth microdilution methods for antifungal susceptibility testing of Aspergillus species. The MICs of antifungal agents were determined for 100 Aspergillus isolates, including 54 Aspergillus fumigatus (24 TR34/L98H isolates), 23 A. flavus, 13 A. terreus, and 10 A. niger isolates. The overall agreement (within 2 2-fold dilutions) between the two methods was 100%, 95%, 92%, and 90% for voriconazole, posaconazole, itraconazole, and amphotericin B, respectively. The voriconazole geometric mean (GM) MICs were nearly identical for all isolates using both methods, whereas the itraconazole and posaconazole GM MICs obtained using the YeastOne method were approximately 1 dilution lower than those obtained using the reference method. In contrast, the amphotericin B GM MIC obtained using the YeastOne method was 3.3-fold higher than that observed using the reference method. For the 24 A. fumigatus TR34/L98H isolates assayed, the categorical agreement (classified according to the CLSI epidemiological cutoff values) was 100%, 87.5%, and 83.3% for itraconazole, voriconazole, and posaconazole, respectively. For four A. niger isolates, the itraconazole MICs were >8 μg/ml using the M38-A2 method due to trailing growth, whereas the corresponding itraconazole MICs obtained using the YeastOne method were all ≤0.25 μg/ml without trailing growth. These data suggest that the YeastOne method can be used as an alternative for azole susceptibility testing of Aspergillus species and for detecting the A. fumigatus TR34/L98H isolates but that this method fails to detect A. niger isolates exhibiting trailing growth with itraconazole. Additionally, for isolates with azole MICs that approach or that are at susceptibility breakpoints or with high amphotericin B MICs detected using the YeastOne method, further MIC confirmation using the reference CLSI method is needed.


2012 ◽  
Vol 57 (3) ◽  
pp. 1275-1282 ◽  
Author(s):  
Francesca Bugli ◽  
Brunella Posteraro ◽  
Massimiliano Papi ◽  
Riccardo Torelli ◽  
Alessandro Maiorana ◽  
...  

ABSTRACTAspergillus fumigatusbiofilms represent a problematic clinical entity, especially because of their recalcitrance to antifungal drugs, which poses a number of therapeutic implications for invasive aspergillosis, the most difficult-to-treatAspergillus-related disease. While the antibiofilm activities of amphotericin B (AMB) deoxycholate and its lipid formulations (e.g., liposomal AMB [LAMB]) are well documented, the effectiveness of these drugs in combination with nonantifungal agents is poorly understood. In the present study,in vitrointeractions between polyene antifungals (AMB and LAMB) and alginate lyase (AlgL), an enzyme degrading the polysaccharides produced as extracellular polymeric substances (EPSs) within the biofilm matrix, againstA. fumigatusbiofilms were evaluated by using the checkerboard microdilution and the time-kill assays. Furthermore, atomic force microscopy (AFM) was used to image and quantify the effects of AlgL-antifungal combinations on biofilm-growing hyphal cells. On the basis of fractional inhibitory concentration index values, synergy was found between both AMB formulations and AlgL, and this finding was also confirmed by the time-kill test. Finally, AFM analysis showed that whenA. fumigatusbiofilms were treated with AlgL or polyene alone, as well as with their combination, both a reduction of hyphal thicknesses and an increase of adhesive forces were observed compared to the findings for untreated controls, probably owing to the different action by the enzyme or the antifungal compounds. Interestingly, marked physical changes were noticed inA. fumigatusbiofilms exposed to the AlgL-antifungal combinations compared with the physical characteristics detected after exposure to the antifungals alone, indicating that AlgL may enhance the antibiofilm activity of both AMB and LAMB, perhaps by disrupting the hypha-embedding EPSs and thus facilitating the drugs to reach biofilm cells. Taken together, our results suggest that a combination of AlgL and a polyene antifungal may prove to be a new therapeutic strategy for invasive aspergillosis, while reinforcing the EPS as a valuable antibiofilm drug target.


2002 ◽  
Vol 46 (3) ◽  
pp. 702-707 ◽  
Author(s):  
D. T. A. Te Dorsthorst ◽  
P. E. Verweij ◽  
J. F. G. M. Meis ◽  
N. C. Punt ◽  
J. W. Mouton

ABSTRACT Although the fractional inhibitory concentration (FIC) index is most frequently used to define or to describe drug interactions, it has some important disadvantages when used for drugs against filamentous fungi. This includes observer bias in the determination of the MIC and no agreement on the endpoints (MIC-0, MIC-1, or MIC-2 [≥95, ≥75, and ≥50% growth inhibition, respectively]) when studying drug combinations. Furthermore, statistical analysis and comparisons are troublesome. The use of a spectrophotometric method to determine the effect of drug combinations yields quantitative data and permits the use of model fits to the whole response surface. We applied the response surface model described by Greco et al. (W. R. Greco, G. Bravo, and J. C. Parsons, Pharmacol. Rev. 47:331-385, 1995) to determine the interaction coefficient alpha (ICα) using a program developed for that purpose and compared the results with FIC indices. The susceptibilities of amphotericin B (AM), itraconazole (IT), and terbinafine (TB) were tested either alone or in combination against 10 IT-susceptible (IT-S) and 5 IT-resistant (IT-R) clinical strains of Aspergillus fumigatus using a modified checkerboard microdilution method that employs the dye MTT [3-(4,5-dimethyl-2-thiazyl)2,5-diphenyl-2H-tetrazolium bromide]. Growth in each well was determined by a spectrophotometer. FIC indices were determined and ICα values were estimated for each organism strain combination, and the latter included error estimates. Depending on the MIC endpoint used, the FIC index ranged from 1.016 to 2.077 for AM-IT, from 0.544 to 1.767 for AM-TB, and from 0.656 to 0.740 for IT-TB for the IT-S strains. For the IT-R strains the FIC index ranged from 0.308 to 1.767 for AM-IT, from 0.512 to 1.646 for AM-TB, and from 0.403 to 0.497 for IT-TB. The results indicate that the degree of interaction is not only determined by the agents themselves but also by the choice of the endpoint. Estimates of the ICα values showed more consistent results. Although the absolute FIC indices were difficult to interpret, there was a good correlation with the results obtained using the ICα values. The combination of AM with either IT or TB was antagonistic in vitro, whereas the combination of IT and TB was synergistic in vitro for both IT-S and IT-R strains. The use of response surface modeling to determine the interaction of drugs against filamentous fungi is promising, and more consistent results are obtained by this method than by using FIC indices.


1984 ◽  
Vol 60 (2) ◽  
pp. 428-430 ◽  
Author(s):  
Edward B. Ilgren ◽  
Diana Westmorland ◽  
Christopher B. T. Adams ◽  
Robert G. Mitchell

✓ The authors report a case of cerebellar pseudotumor caused by a Candida species without evidence of any underlying systemic disorder or extracranial disease. Total removal followed by treatment with amphotericin B resulted in a favorable outcome.


Sign in / Sign up

Export Citation Format

Share Document