scholarly journals Emergence of Polymyxin B Resistance Influences Pathogenicity in Pseudomonas aeruginosa Mutators

2015 ◽  
Vol 59 (7) ◽  
pp. 4343-4346 ◽  
Author(s):  
Zackery P. Bulman ◽  
Mark D. Sutton ◽  
Neang S. Ly ◽  
Jurgen B. Bulitta ◽  
Patricia N. Holden ◽  
...  

ABSTRACTThe interplay between polymyxin B pharmacodynamics and pathogenicity was examined inPseudomonas aeruginosaPAO1 and isogenic DNA repair-deficient mutators (mutMandmutSstrains). AgainstmutSmutators, polymyxin B initial killing was concentration dependent, with >99.9% bacterial reduction at 2 h followed by regrowth and resistance. The pre- versus postexposed strains were inoculated real time intoGalleria mellonellawaxworms, resulting in increased median survival times from 20 h to 23 h (P< 0.001). Emergence of resistance inmutSP. aeruginosaresulted in attenuation of virulence.

mSphere ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Eriel Martínez ◽  
Javier Campos-Gómez

ABSTRACT Biofilm development is a key component of the ability of Pseudomonas aeruginosa to evade host immune defenses and resist multiple drugs. Induction of the filamentous phage Pf, which usually is lysogenized in clinical and environmental isolates of P. aeruginosa, plays an important role in biofilm assembly, maturation, and dispersal. Despite the clinical relevance of Pf, the molecular biology of this phage is largely unknown. In this study, we found that rolling circle replication of Pf depends on UvrD, a DNA helicase normally involved in DNA repair. We also identified the initiator protein of Pf and found that it shares structural similarity with that of Vibrio cholerae phages CTXφ and VGJφ, which also use UvrD for replication. Our results reveal that, in addition to DNA repair, UvrD plays an essential role in rolling circle replication of filamentous phages among diverse bacteria genera, adding a new, previously unrecognized function of this accessory helicase. Pf is a lysogenic filamentous phage that promotes biofilm development in Pseudomonas aeruginosa. Pf replicates by a rolling circle replication system which depends on a phage-encoded initiator protein and host factors usually involved in chromosome replication. Rep, an accessory replicative DNA helicase, is crucial for replication of filamentous phages in Escherichia coli. In contrast, here we show that, instead of depending on Rep, Pf replication depends on UvrD, an accessory helicase implicated in DNA repair. In this study, we also identified the initiator protein of Pf and found that it shares similarities with that of Vibrio phages CTXφ and VGJφ, which also depend on UvrD for replication. A structural comparative analysis of the initiator proteins of most known filamentous phages described thus far suggested that UvrD, known as a nonreplicative helicase, is involved in rolling circle replication of filamentous phages in diverse bacteria genera. This report consolidates knowledge on the new role of UvrD in filamentous phage replication, a function previously thought to be exclusive of Rep helicase. IMPORTANCE Biofilm development is a key component of the ability of Pseudomonas aeruginosa to evade host immune defenses and resist multiple drugs. Induction of the filamentous phage Pf, which usually is lysogenized in clinical and environmental isolates of P. aeruginosa, plays an important role in biofilm assembly, maturation, and dispersal. Despite the clinical relevance of Pf, the molecular biology of this phage is largely unknown. In this study, we found that rolling circle replication of Pf depends on UvrD, a DNA helicase normally involved in DNA repair. We also identified the initiator protein of Pf and found that it shares structural similarity with that of Vibrio cholerae phages CTXφ and VGJφ, which also use UvrD for replication. Our results reveal that, in addition to DNA repair, UvrD plays an essential role in rolling circle replication of filamentous phages among diverse bacteria genera, adding a new, previously unrecognized function of this accessory helicase.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Anna Olsson ◽  
Pikkei Wistrand-Yuen ◽  
Elisabet I. Nielsen ◽  
Lena E. Friberg ◽  
Linus Sandegren ◽  
...  

ABSTRACT Antibiotic combination therapy is used for severe infections caused by multidrug-resistant (MDR) Gram-negative bacteria, yet data regarding which combinations are most effective are lacking. This study aimed to evaluate the in vitro efficacy of polymyxin B in combination with 13 other antibiotics against four clinical strains of MDR Pseudomonas aeruginosa. We evaluated the interactions of polymyxin B in combination with amikacin, aztreonam, cefepime, chloramphenicol, ciprofloxacin, fosfomycin, linezolid, meropenem, minocycline, rifampin, temocillin, thiamphenicol, or trimethoprim by automated time-lapse microscopy using predefined cutoff values indicating inhibition of growth (≤106 CFU/ml) at 24 h. Promising combinations were subsequently evaluated in static time-kill experiments. All strains were intermediate or resistant to polymyxin B, antipseudomonal β-lactams, ciprofloxacin, and amikacin. Genes encoding β-lactamases (e.g., blaPAO and blaOXA-50) and mutations associated with permeability and efflux were detected in all strains. In the time-lapse microscopy experiments, positive interactions were found with 39 of 52 antibiotic combination/bacterial strain setups. Enhanced activity was found against all four strains with polymyxin B used in combination with aztreonam, cefepime, fosfomycin, minocycline, thiamphenicol, and trimethoprim. Time-kill experiments showed additive or synergistic activity with 27 of the 39 tested polymyxin B combinations, most frequently with aztreonam, cefepime, and meropenem. Positive interactions were frequently found with the tested combinations, against strains that harbored several resistance mechanisms to the single drugs, and with antibiotics that are normally not active against P. aeruginosa. Further study is needed to explore the clinical utility of these combinations.


2019 ◽  
Vol 87 (8) ◽  
Author(s):  
Katherine J. O’Malley ◽  
Jennifer D. Bowling ◽  
Eileen M. Barry ◽  
Karsten R. O. Hazlett ◽  
Douglas S. Reed

ABSTRACTInhalation ofFrancisella tularensiscauses pneumonic tularemia in humans, a severe disease with a 30 to 60% mortality rate. The reproducible delivery of aerosolized virulent bacteria in relevant animal models is essential for evaluating medical countermeasures. Here we developed optimized protocols for infecting New Zealand White (NZW) rabbits with aerosols containingF. tularensis. We evaluated the relative humidity, aerosol exposure technique, and bacterial culture conditions to optimize the spray factor (SF), a central metric of aerosolization. This optimization reduced both inter- and intraday variability and was applicable to multiple isolates ofF. tularensis. Further improvements in the accuracy and precision of the inhaled pathogen dose were achieved through enhanced correlation of the bacterial culture optical density and the number of CFU. Plethysmograph data collected during exposures found that respiratory function varied considerably between rabbits, was not a function of weight, and did not improve with acclimation to the system. Live vaccine strain (LVS)-vaccinated rabbits were challenged via aerosol with human-virulentF. tularensisSCHU S4 that had been cultivated in either Mueller-Hinton broth (MHB) or brain heart infusion (BHI) broth. LVS-vaccinated animals challenged with SCHU S4 that had been cultivated in MHB experienced short febrile periods (median, 3.2 days), limited weight loss (<5%), and longer median survival times (∼18 days) that were significantly different from those for unvaccinated controls. In contrast, LVS-vaccinated rabbits challenged with SCHU S4 that had been cultivated in BHI experienced longer febrile periods (median, 5.5 days) and greater weight loss (>10%) than the unvaccinated controls and median survival times that were not significantly different from those for the unvaccinated controls. These studies highlight the importance of careful characterization and optimization of protocols for aerosol challenge with pathogenic agents.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Shannon R. Coleman ◽  
Travis Blimkie ◽  
Reza Falsafi ◽  
Robert E. W. Hancock

ABSTRACT Swarming surface motility is a complex adaptation leading to multidrug antibiotic resistance and virulence factor production in Pseudomonas aeruginosa. Here, we expanded previous studies to demonstrate that under swarming conditions, P. aeruginosa PA14 is more resistant to multiple antibiotics, including aminoglycosides, β-lactams, chloramphenicol, ciprofloxacin, tetracycline, trimethoprim, and macrolides, than swimming cells, but is not more resistant to polymyxin B. We investigated the mechanism(s) of swarming-mediated antibiotic resistance by examining the transcriptomes of swarming cells and swarming cells treated with tobramycin by transcriptomics (RNA-Seq) and reverse transcriptase quantitative PCR (qRT-PCR). RNA-Seq of swarming cells (versus swimming) revealed 1,581 dysregulated genes, including 104 transcriptional regulators, two-component systems, and sigma factors, numerous upregulated virulence and iron acquisition factors, and downregulated ribosomal genes. Strain PA14 mutants in resistome genes that were dysregulated under swarming conditions were tested for their ability to swarm in the presence of tobramycin. In total, 41 mutants in genes dysregulated under swarming conditions were shown to be more resistant to tobramycin under swarming conditions, indicating that swarming-mediated tobramycin resistance was multideterminant. Focusing on two genes downregulated under swarming conditions, both prtN and wbpW mutants were more resistant to tobramycin, while the prtN mutant was additionally resistant to trimethoprim under swarming conditions; complementation of these mutants restored susceptibility. RNA-Seq of swarming cells treated with subinhibitory concentrations of tobramycin revealed the upregulation of the multidrug efflux pump MexXY and downregulation of virulence factors.


2019 ◽  
Vol 87 (4) ◽  
Author(s):  
Toby L. Bartholomew ◽  
Timothy J. Kidd ◽  
Joana Sá Pessoa ◽  
Raquel Conde Álvarez ◽  
José A. Bengoechea

ABSTRACTAcinetobacter baumanniicauses a wide range of nosocomial infections. This pathogen is considered a threat to human health due to the increasingly frequent isolation of multidrug-resistant strains. There is a major gap in knowledge on the infection biology ofA. baumannii, and only a few virulence factors have been characterized, including lipopolysaccharide. The lipid A expressed byA. baumanniiis hepta-acylated and contains 2-hydroxylaurate. The late acyltransferases controlling the acylation of lipid A have been already characterized. Here, we report the characterization ofA. baumanniiLpxO, which encodes the enzyme responsible for the 2-hydroxylation of lipid A. By genetic methods and mass spectrometry, we demonstrate that LpxO catalyzes the 2-hydroxylation of the laurate transferred byA. baumanniiLpxL. LpxO-dependent lipid A 2-hydroxylation protectsA. baumanniifrom polymyxin B, colistin, and human β-defensin 3. LpxO contributes to the survival ofA. baumanniiin human whole blood and is required for pathogen survival in the waxmothGalleria mellonella. LpxO also protectsAcinetobacterfromG. mellonellaantimicrobial peptides and limits their expression. Further demonstrating the importance of LpxO-dependent modification in immune evasion, 2-hydroxylation of lipid A limits the activation of the mitogen-activated protein kinase Jun N-terminal protein kinase to attenuate inflammatory responses. In addition, LpxO-controlled lipid A modification mediates the production of the anti-inflammatory cytokine interleukin-10 (IL-10) via the activation of the transcriptional factor CREB. IL-10 in turn limits the production of inflammatory cytokines followingA. baumanniiinfection. Altogether, our studies suggest that LpxO is a candidate for the development of anti-A. baumanniidrugs.


2017 ◽  
Vol 5 (35) ◽  
Author(s):  
Luis F. Espinosa-Camacho ◽  
Gabriela Delgado ◽  
Guadalupe Miranda-Novales ◽  
Gloria Soberón-Chávez ◽  
Luis D. Alcaraz ◽  
...  

ABSTRACT Two Pseudomonas aeruginosa strains isolated from children with bacteremia in Mexico City were sequenced using PacBio RS-II single-molecule real-time (SMRT) technology. The strains consist of a 7.0- to 7.4-Mb chromosome, with a high content of mobile elements, and variation in the genetic content of class 1 integron In1409.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Zhaojun Zheng ◽  
Nagendran Tharmalingam ◽  
Qingzhong Liu ◽  
Elamparithi Jayamani ◽  
Wooseong Kim ◽  
...  

ABSTRACT The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pathogen Pseudomonas aeruginosa. The peptide showed little hemolytic activity and toxicity toward mammalian cells, and the MICs against most clinical P. aeruginosa isolates were 32 to 64 μg/ml, and its MICs versus other Gram-negative bacteria were 2 to 32 μg/ml. Importantly, cecropin A2 demonstrated synergistic activity against P. aeruginosa when combined with tetracycline, reducing the MICs of both agents by 8-fold. The combination was also effective in vivo in the P. aeruginosa/Galleria mellonella model (P < 0.001). We found that cecropin A2 bound to P. aeruginosa lipopolysaccharides, permeabilized the membrane, and interacted with the bacterial genomic DNA, thus facilitating the translocation of tetracycline into the cytoplasm. In summary, the combination of cecropin A2 and tetracycline demonstrated synergistic antibacterial activity against P. aeruginosa in vitro and in vivo, offering an alternative approach for the treatment of P. aeruginosa infections.


2019 ◽  
Vol 85 (9) ◽  
Author(s):  
Jongsoo Jeon ◽  
Dongeun Yong

ABSTRACT Extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) is a life-threatening pathogen that causes serious global problems. Here, we investigated two novel P. aeruginosa bacteriophages (phages), Bϕ-R656 and Bϕ-R1836, in vitro, in silico, and in vivo to evaluate the potential of phage therapy to control XDR-PA clinical strains. Bϕ-R656 and Bϕ-R1836 belong to the Siphoviridae family and exhibited broad host ranges which could lyse 18 (64%) and 14 (50%) of the 28 XDR-PA strains. In addition, the two phages showed strong bacteriolytic activity against XDR-PA host strains from pneumonia patients. The whole genomes of Bϕ-R656 and Bϕ-R1836 have linear double-stranded DNA of 60,919 and 37,714 bp, respectively. The complete sequence of Bϕ-R656 had very low similarity to the previously discovered P. aeruginosa phages in GenBank, but phage Bϕ-R1836 exhibited 98% and 91% nucleotide similarity to Pseudomonas phages YMC12/01/R24 and PA1/KOR/2010, respectively. In the two in vivo infection models, treatment with Bϕ-R656 and Bϕ-R1836 enhanced the survival of Galleria mellonella larvae (50% and 60%, respectively) at 72 h postinfection and pneumonia-model mice (66% and 83%, respectively) at 12 days postinfection compared with untreated controls. Treatment with Bϕ-R656 or Bϕ-R1836 also significantly decreased the bacterial load in the lungs of the mouse pneumonia model (>6 log10 CFU and >4 log10 CFU, respectively) on day 5. IMPORTANCE In this study, two novel P. aeruginosa phages, Bϕ-R656 and Bϕ-R1836, were evaluated in vitro, in silico, and in vivo for therapeutic efficacy and safety as an alternative antibacterial agent to control XDR-PA strains collected from pneumonia patients. Both phages exhibited potent bacteriolytic activity and greatly improved survival in G. mellonella larva infection and a mouse acute pneumonia model. Based on these results, we strongly predict that these two new phages could be used as fast-acting and safe alternative biological weapons against XDR-PA infections.


2019 ◽  
Vol 57 (11) ◽  
Author(s):  
Romney M. Humphries ◽  
Daniel A. Green ◽  
Audrey N. Schuetz ◽  
Yehudit Bergman ◽  
Shawna Lewis ◽  
...  

ABSTRACT Susceptibility testing of the polymyxins (colistin and polymyxin B) is challenging for clinical laboratories. The Clinical and Laboratory Standards Institute (CLSI) Antimicrobial Susceptibility Testing Subcommittee evaluated two methods to enable accurate testing of these agents. These methods were a colistin broth disk elution (CBDE) and a colistin agar test (CAT), the latter of which was evaluated using two inoculum volumes, 1 μl (CAT-1) and 10 μl (CAT-10). The methods were evaluated using a collection of 270 isolates of Enterobacterales, 122 Pseudomonas aeruginosa isolates, and 106 Acinetobacter spp. isolates. Overall, 94.4% of CBDE results were in essential agreement and 97.9% in categorical agreement (CA) with reference broth microdilution MICs. Nine very major errors (VME; 3.2%) and 3 major errors (ME; 0.9%) were observed. With the CBDE, 98.6% CA was observed for Enterobacterales (2.5% VME, 0% ME), 99.3% CA was observed for P. aeruginosa (0% VME, 0.7% ME), and 93.1% CA was observed for Acinetobacter spp. (5.6% VME, 3.3% ME). Overall, CA was 94.9% with 6.8% VME using CAT-1 and improved to 98.3% with 3.9% VME using CAT-10. No ME were observed using either CAT-1 or CAT-10. Using the CAT-1/CAT-10, the CA observed was 99.4%/99.7% for Enterobacterales (1%/0.5% VME), 98.7%/100% for P. aeruginosa (8.3%/0% VME), and 88.5%/92.3% for Acinetobacter spp. (21.4%/14.3% VME). Based on these data, the CLSI antimicrobial susceptibility testing (AST) subcommittee endorsed the CBDE and CAT-10 methods for colistin testing of Enterobacterales and P. aeruginosa.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Fatma Ben Jeddou ◽  
Léna Falconnet ◽  
Alexandre Luscher ◽  
Thissa Siriwardena ◽  
Jean-Louis Reymond ◽  
...  

ABSTRACT Colistin (polymyxin E) is a last-resort antibiotic against multidrug-resistant isolates of Pseudomonas aeruginosa. However, the nephro-toxicity of colistin limits its use, spurring the interest in novel antimicrobial peptides (AMP). Here, we show that the synthetic AMP-dendrimer G3KL (MW 4,531.38 Da, 15 positive charges, MIC = 8 mg/liter) showed faster killing than polymyxin B (Pmx-B) with no detectable resistance selection in P. aeruginosa strain PA14. Spontaneous mutants selected on Pmx-B, harboring loss of function mutations in the PhoQ sensor kinase gene, showed increased Pmx-B MICs and arnB operon expression (4-amino-l-arabinose addition to lipid A), but remained susceptible to dendrimers. Two mutants carrying a missense mutation in the periplasmic loop of the PmrB sensor kinase showed increased MICs for Pmx-B (8-fold) and G3KL (4-fold) but not for the dendrimer T7 (MW 4,885.64 Da, 16 positive charges, MIC = 8 mg/liter). The pmrB mutants showed increased expression of the arnB operon as well as of the speD2-speE2-PA4775 operon, located upstream of pmrAB, and involved in polyamine biosynthesis. Exogenous supplementation with the polyamines spermine and norspermine increased G3KL and T7 MICs in a phoQ mutant background but not in the PA14 wild type. This suggests that both addition of 4-amino-l-arabinose and secretion of polyamines are required to reduce susceptibility to dendrimers, probably neutralizing the negative charges present on the lipid A and the 2-keto-3-deoxyoctulosonic acid (KDO) sugars of the lipopolysaccharide (LPS), respectively. We further show by transcriptome analysis that the dendrimers G3KL and T7 induce adaptive responses through the CprRS two-component system in PA14.


Sign in / Sign up

Export Citation Format

Share Document