scholarly journals Treatment Outcome of Bacteremia Due to KPC-Producing Klebsiella pneumoniae: Superiority of Combination Antimicrobial Regimens

2012 ◽  
Vol 56 (4) ◽  
pp. 2108-2113 ◽  
Author(s):  
Zubair A. Qureshi ◽  
David L. Paterson ◽  
Brian A. Potoski ◽  
Mary C. Kilayko ◽  
Gabriel Sandovsky ◽  
...  

ABSTRACTKlebsiella pneumoniaeproducingKlebsiella pneumoniaecarbapenemase (KPC) has been associated with serious infections and high mortality. The optimal antimicrobial therapy for infection due to KPC-producingK. pneumoniaeis not well established. We conducted a retrospective cohort study to evaluate the clinical outcome of patients with bacteremia caused by KPC-producingK. pneumoniae. A total of 41 unique patients with blood cultures growing KPC-producingK. pneumoniaewere identified at two medical centers in the United States. Most of the infections were hospital acquired (32; 78%), while the rest of the cases were health care associated (9; 22%). The overall 28-day crude mortality rate was 39.0% (16/41). In the multivariate analysis, definitive therapy with a combination regimen was independently associated with survival (odds ratio, 0.07 [95% confidence interval, 0.009 to 0.71],P= 0.02). The 28-day mortality was 13.3% in the combination therapy group compared with 57.8% in the monotherapy group (P= 0.01). The most commonly used combinations were colistin-polymyxin B or tigecycline combined with a carbapenem. The mortality in this group was 12.5% (1/8). Despitein vitrosusceptibility, patients who received monotherapy with colistin-polymyxin B or tigecycline had a higher mortality of 66.7% (8/12). The use of combination therapy for definitive therapy appears to be associated with improved survival in bacteremia due to KPC-producingK. pneumoniae.

2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Dennis Huang ◽  
Brenda Yu ◽  
John K. Diep ◽  
Rajnikant Sharma ◽  
Michael Dudley ◽  
...  

ABSTRACT The multidrug resistance profiles of Klebsiella pneumoniae carbapenemase (KPC) producers have led to increased clinical polymyxin use. Combination therapy with polymyxins may improve treatment outcomes, but it is uncertain which combinations are most effective. Clinical successes with intravenous minocycline-based combination treatments have been reported for infections caused by carbapenemase-producing bacteria. The objective of this study was to evaluate the in vitro activity of polymyxin B and minocycline combination therapy against six KPC-2-producing K. pneumoniae isolates (minocycline MIC range, 2 to 32 mg/liter). Polymyxin B monotherapy (0.5, 1, 2, 4, and 16 mg/liter) resulted in a rapid reduction of up to 6 log in bactericidal activity followed by regrowth by 24 h. Minocycline monotherapy (1, 2, 4, 8, and 16 mg/liter) showed no reduction of activity of >1.34 log against all isolates, although concentrations of 8 and 16 mg/liter prolonged the time to regrowth. When the therapies were used in combination, rapid bactericidal activity was followed by slower regrowth, with synergy (60 of 120 combinations at 24 h, 19 of 120 combinations at 48 h) and additivity (43 of 120 combinations at 24 h, 44 of 120 combinations at 48 h) against all isolates. The extent of killing was greatest against the more susceptible polymyxin B isolates (MICs of ≤0.5 mg/liter) regardless of the minocycline MIC. The pharmacodynamic activity of combined polymyxin B-minocycline therapy against KPC-producing K. pneumoniae is dependent on polymyxin B susceptibility. Further in vitro and animal studies must be performed to fully evaluate the efficacy of this drug combination.


2014 ◽  
Vol 59 (3) ◽  
pp. 1797-1801 ◽  
Author(s):  
Ryan K. Shields ◽  
M. Hong Nguyen ◽  
Brian A. Potoski ◽  
Ellen G. Press ◽  
Liang Chen ◽  
...  

ABSTRACTTreatment failures of a carbapenem-colistin regimen among patients with bacteremia due to sequence type 258 (ST258), KPC-2-producingKlebsiella pneumoniaewere significantly more likely if both agents were inactivein vitro, as defined by a colistin MIC of >2 μg/ml and the presence of either a majorompK36porin mutation (guanine and alanine insertions at amino acids 134 and 135 [ins aa 134–135 GD], IS5promoter insertion [P= 0.007]) or a doripenem MIC of >8 μg/ml (P= 0.01). MajorompK36mutations among KPC-K. pneumoniaestrains are important determinants of carbapenem-colistin responsesin vitroandin vivo.


2011 ◽  
Vol 55 (12) ◽  
pp. 5893-5899 ◽  
Author(s):  
Michael J. Satlin ◽  
Christine J. Kubin ◽  
Jill S. Blumenthal ◽  
Andrew B. Cohen ◽  
E. Yoko Furuya ◽  
...  

ABSTRACTCarbapenem-resistantKlebsiella pneumoniae(CRKP) is an increasingly common cause of health care-associated urinary tract infections. Antimicrobials within vitroactivity against CRKP are typically limited to polymyxins, tigecycline, and often, aminoglycosides. We conducted a retrospective cohort study of cases of CRKP bacteriuria at New York-Presbyterian Hospital from January 2005 through June 2010 to compare microbiologic clearance rates based on the use of polymyxin B, tigecycline, or an aminoglycoside. We constructed three active antimicrobial cohorts based on the active agent used and an untreated cohort of cases that did not receive antimicrobial therapy with Gram-negative activity. Microbiologic clearance was defined as having a follow-up urine culture that did not yield CRKP. Cases without an appropriate follow-up culture or that received multiple active agents or less than 3 days of the active agent were excluded. Eighty-seven cases were included in the active antimicrobial cohorts, and 69 were included in the untreated cohort. The microbiologic clearance rate was 88% in the aminoglycoside cohort (n= 41), compared to 64% in the polymyxin B (P= 0.02;n= 25), 43% in the tigecycline (P< 0.001;n= 21), and 36% in the untreated (P< 0.001;n= 69) cohorts. Using multivariate analysis, the odds of clearance were lower for the polymyxin B (odds ratio [OR], 0.10;P= 0.003), tigecycline (OR, 0.08;P= 0.001), and untreated (OR, 0.14;P= 0.003) cohorts than for the aminoglycoside cohort. Treatment with an aminoglycoside, when activein vitro, was associated with a significantly higher rate of microbiologic clearance of CRKP bacteriuria than treatment with either polymyxin B or tigecycline.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Michael R. Jacobs ◽  
Caryn E. Good ◽  
Andrea M. Hujer ◽  
Ayman M. Abdelhamed ◽  
Daniel D. Rhoads ◽  
...  

ABSTRACT Plazomicin was tested against 697 recently acquired carbapenem-resistant Klebsiella pneumoniae isolates from the Great Lakes region of the United States. Plazomicin MIC50 and MIC90 values were 0.25 and 1 mg/liter, respectively; 680 isolates (97.6%) were susceptible (MICs of ≤2 mg/liter), 9 (1.3%) intermediate (MICs of 4 mg/liter), and 8 (1.1%) resistant (MICs of >32 mg/liter). Resistance was associated with rmtF-, rmtB-, or armA-encoded 16S rRNA methyltransferases in all except 1 isolate.


2016 ◽  
Vol 60 (6) ◽  
pp. 3601-3607 ◽  
Author(s):  
A. Gomez-Simmonds ◽  
B. Nelson ◽  
D. P. Eiras ◽  
A. Loo ◽  
S. G. Jenkins ◽  
...  

Previous studies reported decreased mortality in patients with carbapenemase-producingKlebsiella pneumoniaebloodstream infections (BSIs) treated with combination therapy but included carbapenem-susceptible and -intermediate isolates, as per revised CLSI breakpoints. Here, we assessed outcomes in patients with BSIs caused by phenotypically carbapenem-resistantK. pneumoniae(CRKP) according to the number ofin vitroactive agents received and whether an extended-spectrum beta-lactam (BL) antibiotic, including meropenem, or an extended-spectrum cephalosporin was administered. We retrospectively reviewed CRKP BSIs at two New York City hospitals from 2006 to 2013, where all isolates had meropenem or imipenem MICs of ≥4 μg/ml. Univariate and multivariable models were created to identify factors associated with mortality. Of 141 CRKP BSI episodes, 23% were treated with a single active agent (SAA), 26% were treated with an SAA plus BL, 28% were treated with multiple active agents (MAA), and 23% were treated with MAA plus BL. Ninety percent of isolates had meropenem MICs of ≥16 μg/ml. Thirty-day mortality was 33% overall and did not significantly differ across the four treatment groups in a multivariable model (P= 0.4); mortality was significantly associated with a Pitt bacteremia score of ≥4 (odds ratio [OR], 7.7; 95% confidence interval [CI], 3.2 to 18.1;P= 0.1), and immunosuppression was protective (OR, 0.4; 95% CI, 0.2 to 1.0;P= 0.04). Individual treatment characteristics were also not significantly associated with outcome, including use of SAAs versus MAA (26% versus 38%,P= 0.1) or BL versus no BL (26% versus 39%,P= 0.1). In summary, in patients with CRKP BSIs caused by isolates with high carbapenem MICs, the role of combination therapy remains unclear, highlighting the need for prospective studies to identify optimal treatment regimens.


2016 ◽  
Vol 60 (8) ◽  
pp. 4490-4500 ◽  
Author(s):  
Krystyna M. Kazmierczak ◽  
Douglas J. Biedenbach ◽  
Meredith Hackel ◽  
Sharon Rabine ◽  
Boudewijn L. M. de Jonge ◽  
...  

ABSTRACTTheKlebsiella pneumoniaecarbapenemase (KPC), first described in the United States in 1996, is now a widespread global problem in several Gram-negative species. A worldwide surveillance study collected Gram-negative pathogens from 202 global sites in 40 countries during 2012 to 2014 and determined susceptibility to β-lactams and other class agents by broth microdilution testing. Molecular mechanisms of β-lactam resistance among carbapenem-nonsusceptibleEnterobacteriaceaeandPseudomonas aeruginosawere determined using PCR and sequencing. Genes encoding KPC enzymes were found in 586 isolates from 22 countries (76 medical centers), including countries in the Asia-Pacific region (32 isolates), Europe (264 isolates), Latin America (210 isolates), and the Middle East (19 isolates, Israel only) and the United States (61 isolates). The majority of isolates wereK. pneumoniae(83.4%); however, KPC was detected in 13 additional species. KPC-2 (69.6%) was more common than KPC-3 (29.5%), with regional variation observed. A novel KPC variant, KPC-18 (KPC-3[V8I]), was identified during the study. Few antimicrobial agents tested remained effectivein vitroagainst KPC-producing isolates, with ceftazidime-avibactam (MIC90, 4 μg/ml), aztreonam-avibactam (MIC90, 0.5 μg/ml), and tigecycline (MIC90, 2 μg/ml) retaining the greatest activity againstEnterobacteriaceaecocarrying KPC and other β-lactamases, whereas colistin (MIC90, 2 μg/ml) demonstrated the greatestin vitroactivity against KPC-positiveP. aeruginosa. This analysis of surveillance data demonstrated that KPC is widely disseminated. KPC was found in multiple species ofEnterobacteriaceaeandP. aeruginosaand has now become a global problem.


2015 ◽  
Vol 59 (6) ◽  
pp. 3596-3597 ◽  
Author(s):  
Natália Barth ◽  
Vanessa B. Ribeiro ◽  
Alexandre P. Zavascki

ABSTRACTWe evaluated thein vitroactivity of polymyxin B plus imipenem, meropenem, or tigecycline against six KPC-2-producingEnterobacteriaceaestrains with high MICs for these antimicrobial agents. Polymyxin B with carbapenems, especially meropenem, were the most active combinations forKlebsiella pneumoniaeandEnterobacter cloacaeregardless of the polymyxin B concentration used in the time-kill assay. This combination was also synergistic against twoSerratia marcescensstrains that are intrinsically resistant to polymyxins. Polymyxin B and tigecycline also presented synergistic activity in most experiments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nayara Helisandra Fedrigo ◽  
Danielle Rosani Shinohara ◽  
Josmar Mazucheli ◽  
Sheila Alexandra Belini Nishiyama ◽  
Floristher Elaine Carrara-Marroni ◽  
...  

AbstractThe emergence of polymyxin resistance in Gram-negative bacteria infections has motivated the use of combination therapy. This study determined the mutant selection window (MSW) of polymyxin B alone and in combination with meropenem and fosfomycin against A. baumannii strains belonging to clonal lineages I and III. To evaluate the inhibition of in vitro drug resistance, we investigate the MSW-derived pharmacodynamic indices associated with resistance to polymyxin B administrated regimens as monotherapy and combination therapy, such as the percentage of each dosage interval that free plasma concentration was within the MSW (%TMSW) and the percentage of each dosage interval that free plasma concentration exceeded the mutant prevention concentration (%T>MPC). The MSW of polymyxin B varied between 1 and 16 µg/mL for polymyxin B-susceptible strains. The triple combination of polymyxin B with meropenem and fosfomycin inhibited the polymyxin B-resistant subpopulation in meropenem-resistant isolates and polymyxin B plus meropenem as a double combination sufficiently inhibited meropenem-intermediate, and susceptible strains. T>MPC 90% was reached for polymyxin B in these combinations, while %TMSW was 0 against all strains. TMSW for meropenem and fosfomycin were also reduced. Effective antimicrobial combinations significantly reduced MSW. The MSW-derived pharmacodynamic indices can be used for the selection of effective combination regimen to combat the polymyxin B-resistant strain.


2018 ◽  
Vol 62 (7) ◽  
Author(s):  
Safa S. Almarzoky Abuhussain ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACT The role of inhalational combination therapy when treating carbapenem-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae with newer beta-lactam/beta-lactamase inhibitors has not been established. Using a 72-h in vitro pharmacodynamic chemostat model, we simulated the human exposures achieved in epithelial lining fluid (ELF) following intravenous treatment with ceftazidime-avibactam (CZA) 2.5 g every 8 h (q8h) alone and in combination with inhaled amikacin (AMK-I) 400 mg q12h, a reformulated aminoglycoside designed for inhalational administration, against three P. aeruginosa isolates (CZA [ceftazidime/avibactam] MICs, 4/4 to 8/4 μg/ml; AMK-I MICs, 8 to 64 μg/ml) and three K. pneumoniae isolates (CZA MICs, 1/4 to 8/4 μg/ml; AMK-I MICs, 32 to 64 μg/ml). Combination therapy resulted in a significant reduction in 72-h CFU compared with that of CZA monotherapy against two of three P. aeruginosa isolates (−4.14 log 10 CFU/ml, P = 0.027; −1.42 log 10 CFU/ml, P = 0.020; and −0.4 log 10 CFU/ml, P = 0.298) and two of three K. pneumoniae isolates (0.04 log 10 CFU/ml, P = 0.963; −4.34 log 10 CFU/ml, P < 0.001; and −2.34 log 10 CFU/ml, P = 0.021). When measured by the area under the bacterial growth curve (AUBC) over 72 h, significant reductions were observed in favor of the combination regimen against all six isolates tested. AMK-I combination therapy successfully suppressed CZA resistance development in one K. pneumoniae isolate harboring bla KPC-3 that was observed during CZA monotherapy. These studies suggest a beneficial role for combination therapy with intravenous CZA and inhaled AMK when treating pneumonia caused by carbapenem-resistant Gram-negative bacteria.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Arnold Louie ◽  
Michael Maynard ◽  
Brandon Duncanson ◽  
Jocelyn Nole ◽  
Michael Vicchiarelli ◽  
...  

ABSTRACT Fosfomycin is the only expoxide antimicrobial and is currently under development in the United States as an intravenously administered product. We were interested in identifying the exposure indices most closely linked to its ability to kill bacterial cells and to suppress amplification of less susceptible subpopulations. We employed the hollow fiber infection model for this investigation and studied wild-type strain Pseudomonas aeruginosa PAO1. Because of anticipated rapid resistance emergence, we shortened the study duration to 24 h but sampled the system more intensively. Doses of 12 and 18 g/day and schedules of daily administration, administration every 8 h, and administration by continuous infusion for each daily dose were studied. We measured fosfomycin concentrations (by liquid chromatography-tandem mass spectrometry), the total bacterial burden, and the burden of less susceptible isolates. We applied a mathematical model to all the data simultaneously. There was a rapid emergence of resistance with all doses and schedules. Prior to resistance emergence, an initial kill of 2 to 3 log 10 (CFU/ml) was observed. The model demonstrated that the area under the concentration-time curve/MIC ratio was linked to total bacterial kill, while the time that the concentration remained above the MIC (or, equivalently, the minimum concentration/MIC ratio) was linked to resistance suppression. These findings were also seen in other investigations with Enterobacteriaceae ( in vitro systems) and P. aeruginosa (murine system). We conclude that for serious infections with high bacterial burdens, fosfomycin may be of value as a new therapeutic and may be optimized by administering the agent as a continuous or prolonged infusion or by use of a short dosing interval. For indications such as ventilator-associated bacterial pneumonia, it may be prudent to administer fosfomycin as part of a combination regimen.


Sign in / Sign up

Export Citation Format

Share Document