scholarly journals Efficacies of Cefepime, Ceftazidime, and Imipenem Alone or in Combination with Amikacin in Rats with Experimental Pneumonia Due to Ceftazidime-Susceptible or -Resistant Enterobacter cloacae Strains

1998 ◽  
Vol 42 (12) ◽  
pp. 3304-3308 ◽  
Author(s):  
Olivier Mimoz ◽  
Anne Jacolot ◽  
Sophie Leotard ◽  
Nadia Hidri ◽  
Kamran Samii ◽  
...  

ABSTRACT The antibacterial activities of human regimens of cefepime, ceftazidime, and imipenem alone or in combination with amikacin against an isogenic pair of Enterobacter cloacae strains (wild type and its corresponding derepressed cephalosporinase mutant) were compared by using our nonlethal model of pneumonia with 180 immunocompetent rats. Compared with untreated animals, all β-lactam-treated rats, except those inoculated with the mutant isolate and receiving ceftazidime, had significantly lower bacterial counts in their lungs 60 h after the onset of therapy. Although the combination of a β-lactam and amikacin was more bactericidal than each corresponding antimicrobial agent alone, true synergy was noted only with cefepime and imipenem against the constitutive derepressed strain.

1999 ◽  
Vol 43 (10) ◽  
pp. 2404-2408 ◽  
Author(s):  
Penelope N. Markham ◽  
Eric Westhaus ◽  
Katya Klyachko ◽  
Michael E. Johnson ◽  
Alex A. Neyfakh

ABSTRACT The multidrug transporter NorA contributes to the resistance ofStaphylococcus aureus to fluoroquinolone antibiotics by promoting their active extrusion from the cell. Previous studies with the alkaloid reserpine, the first identified inhibitor of NorA, indicate that the combination of a chemical NorA inhibitor with a fluoroquinolone could improve the efficacy of this class of antibiotics. Since reserpine is toxic to humans at the concentrations required to inhibit NorA, we sought to identify new inhibitors of NorA that may be used in a clinical setting. Screening of a chemical library yielded a number of structurally diverse inhibitors of NorA that were more potent than reserpine. The new inhibitors act in a synergistic manner with the most widely used fluoroquinolone, ciprofloxacin, by substantially increasing its activity against both NorA-overexpressing and wild-type S. aureus isolates. Furthermore, the inhibitors dramatically suppress the emergence of ciprofloxacin-resistant S. aureus upon in vitro selection with this drug. Some of these new inhibitors, or their derivatives, may prove useful for augmentation of the antibacterial activities of fluoroquinolones in the clinical setting.


1993 ◽  
Vol 37 (2) ◽  
pp. 224-228 ◽  
Author(s):  
U Kopp ◽  
B Wiedemann ◽  
S Lindquist ◽  
S Normark

2016 ◽  
Vol 60 (4) ◽  
pp. 2373-2382 ◽  
Author(s):  
François Guérin ◽  
Claire Lallement ◽  
Christophe Isnard ◽  
Anne Dhalluin ◽  
Vincent Cattoir ◽  
...  

ABSTRACTIn Gram-negative bacteria, the active efflux is an important mechanism of antimicrobial resistance, but little is known about theEnterobacter cloacaecomplex (ECC). It is mediated primarily by pumps belonging to the RND (resistance-nodulation-cell division) family, and only AcrB, part of the AcrAB-TolC tripartite system, was characterized in ECC. However, detailed genome sequence analysis of the strainE. cloacaesubsp.cloacaeATCC 13047 revealed to us that 10 other genes putatively coded for RND-type transporters. We then characterized the role of all of these candidates by construction of corresponding deletion mutants, which were tested for their antimicrobial susceptibility to 36 compounds, their virulence in the invertebrateGalleria mellonellamodel of infection, and their ability to form biofilm. Only the ΔacrBmutant displayed significantly different phenotypes compared to that of the wild-type strain: 4- to 32-fold decrease of MICs of several antibiotics, antiseptics, and dyes, increased production of biofilm, and attenuated virulence inG. mellonella. In order to identify specific substrates of each pump, we individually expressed intransall operons containing an RND pump-encoding gene into the ΔacrBhypersusceptible strain. We showed that three other RND-type efflux systems (ECL_00053-00055, ECL_01758-01759, and ECL_02124-02125) were able to partially restore the wild-type phenotype and to superadd to and even enlarge the broad range of antimicrobial resistance. This is the first global study assessing the role of all RND efflux pumps chromosomally encoded by the ECC, which confirms the major role of AcrB in both pathogenicity and resistance and the potential involvement of other RND-type members in acquired resistance.


2002 ◽  
Vol 46 (6) ◽  
pp. 1966-1970 ◽  
Author(s):  
Sergei B. Vakulenko ◽  
Dasantila Golemi ◽  
Bruce Geryk ◽  
Maxim Suvorov ◽  
James R. Knox ◽  
...  

ABSTRACT The class C β-lactamase from Enterobacter cloacae P99 confers resistance to a wide range of broad-spectrum β-lactams but not to the newer cephalosporin cefepime. Using PCR mutagenesis of the E. cloacae P99 ampC gene, we obtained a Leu-293-Pro mutant of the P99 β-lactamase conferring a higher MIC of cefepime (MIC, 8 μg/ml, compared with 0.5 μg/ml conferred by the wild-type enzyme). In addition, the mutant enzyme produced higher resistance to ceftazidime but not to the other β-lactams tested. Mutants with 15 other replacements of Leu-293 were prepared by site-directed random mutagenesis. None of these mutant enzymes conferred MICs of cefepime higher than that conferred by Leu-293-Pro. We determined the kinetic parameters of the purified E. cloacae P99 β-lactamase and the Leu-293-Pro mutant enzyme. The catalytic efficiencies (k cat/Km ) of the Leu-293-Pro mutant β-lactamase for cefepime and ceftazidime were increased relative to the respective catalytic efficiencies of the wild-type P99 β-lactamase. These differences likely contribute to the higher MICs of cefepime and ceftazidime conferred by this mutant β-lactamase.


2000 ◽  
Vol 44 (4) ◽  
pp. 885-890 ◽  
Author(s):  
Olivier Mimoz ◽  
Sophie Leotard ◽  
Anne Jacolot ◽  
Christophe Padoin ◽  
Kamel Louchahi ◽  
...  

ABSTRACT The antibacterial activities of imipenem-cilastatin, meropenem-cilastatin, cefepime and ceftazidime againstEnterobacter cloacae NOR-1, which produces the carbapenem-hydrolyzing β-lactamase NmcA and a cephalosporinase, and against one of its in vitro-obtained ceftazidime-resistant mutant were compared by using an experimental model of pneumonia with immunocompetent rats. The MICs of the β-lactams with an inoculum of 5 log10 CFU/ml were as follows for E. cloacae NOR-1 and its ceftazidime-resistant mutant, respectively: imipenem, 16 and 128 μg/ml, meropenem, 4 and 32 μg/ml, cefepime, <0.03 and 1 μg/ml, and ceftazidime, 1 and 512 μg/ml. The chromosomally located cephalosporinase and carbapenem-hydrolyzing β-lactamase NmcA were inducible by cefoxitin and meropenem inE. cloacae NOR-1, and both were stably overproduced in the ceftazidime-resistant mutant. Renal impairment was induced (uranyl nitrate, 1 mg/kg of body weight) in rats to simulate the human pharmacokinetic parameters for the β-lactams studied. Animals were intratracheally inoculated with 8.5 log10 CFU of E. cloacae, and therapy was initiated 3 h later. At that time, animal lungs showed bilateral pneumonia containing more than 6 log10 CFU of E. cloacae per g of tissue. Despite the relative low MIC of meropenem for E. cloacae NOR-1, the carbapenem-treated rats had no decrease in bacterial counts in their lungs 60 h after therapy onset compared to the counts for the controls, regardless of whether E. cloacae NOR-1 or its ceftazidime-resistant mutant was inoculated. A significant decrease in bacterial titers was observed for the ceftazidime-treated rats infected with E. cloacae NOR-1 only. Cefepime was the only β-lactam tested effective as treatment against infections due to E. cloacae NOR-1 or its ceftazidime-resistant mutant.


2012 ◽  
Vol 56 (4) ◽  
pp. 2084-2090 ◽  
Author(s):  
Astrid Pérez ◽  
Margarita Poza ◽  
Ana Fernández ◽  
Maria del Carmen Fernández ◽  
Susana Mallo ◽  
...  

ABSTRACTMultidrug efflux pumps have emerged as important mechanisms of antimicrobial resistance in bacterial pathogens. In order to cause infection, pathogenic bacteria require mechanisms to avoid the effects of host-produced compounds, and express efflux pumps may accomplish this task. In this study, we evaluated the effect of the inactivation of AcrAB-TolC on antimicrobial resistance, fitness, and virulence inEnterobacter cloacae, an opportunistic pathogen usually involved in nosocomial infections. Two different clinical isolates ofE. cloacaewere used, EcDC64 (multidrug resistance overexpressing the AcrAB-TolC efflux pump) and Jc194 (basal AcrAB-TolC expression). TheacrAandtolCgenes were deleted in strains EcDC64 and Jc194 to produce, respectively, EcΔacrAand EcΔtolCand JcΔacrAand JcΔtolCknockout (KO) derivatives. Antibiotic susceptibility testing was performed with all isolates, and we discovered that these mechanisms are involved in the resistance ofE. cloacaeto several antibiotics. Competition experiments were also performed with wild-type and isogenic KO strains. The competition index (CI), defined as the mutant/wild-type ratio, revealed that theacrAandtolCgenes both affect the fitness ofE. cloacae, as fitness was clearly reduced in theacrAandtolCKO strains. The median CI values obtainedin vitroandin vivowere, respectively, 0.42 and 0.3 for EcDC64/EcΔacrA, 0.24 and 0.38 for EcDC64/EcΔtolC, 0.15 and 0.11 for Jc194/JcΔacrA, and 0.38 and 0.39 for Jc194/JcΔtolC. Use of an intraperitoneal mouse model of systemic infection revealed reduced virulence in bothE. cloacaeclinical strains when either theacrAortolCgene was inactivated. In conclusion, the structural components of the AcrAB-TolC efflux pump appear to play a role in antibiotic resistance as well as environmental adaptation and host virulence in clinical isolates ofE. cloacae.


1999 ◽  
Vol 43 (12) ◽  
pp. 2969-2974 ◽  
Author(s):  
Tao Lu ◽  
Xilin Zhao ◽  
Karl Drlica

ABSTRACT Antibacterial activities of gatifloxacin (AM1155), a new C-8-methoxy fluoroquinolone, and two structurally related compounds, AM1121 and ciprofloxacin, were studied with an isogenic set of ten quinolone-resistant, gyrA (gyrase) mutants ofEscherichia coli. To compare the effect of each mutation on resistance, the mutant responses were normalized to those of wild-type cells. Alleles exhibiting the most resistance to growth inhibition mapped in α-helix 4, which is thought to lie on a GyrA dimer surface that interacts with DNA. The C-8-methoxy group lowered the resistance due to these mutations more than it lowered resistance arising from several gyrA alleles located outside α-helix 4. These data are consistent with α-helix 4 being a distinct portion of the quinolone-binding site of GyrA. A helix change to proline behaved more like nonhelix alleles, indicating that helix perturbation differs from the other changes at helix residues. Addition of a parC(topoisomerase IV) resistance allele revealed that the C-8-methoxy group also facilitated attack of topoisomerase IV. When lethal effects were measured at a constant multiple of the minimum inhibitory concentration for each fluoroquinolone to normalize for differences in bacteriostatic action, gatifloxacin was more potent than the C-8-H compounds, both in the presence and absence of protein synthesis (an exception was observed when alanine was substituted for aspartic acid at position 82). Collectively, these data show that the C-8-methoxy group contributes to the enhanced activity of gatifloxacin against resistant gyrase and wild-type topoisomerase IV.


2005 ◽  
Vol 73 (6) ◽  
pp. 3806-3809 ◽  
Author(s):  
Peter J. McNamara ◽  
Arnold S. Bayer

ABSTRACT Mutations in rot restore in vitro toxin production to agr-negative strains of Staphylococcus aureus. We show that a rot mutation returns wild-type virulence to an agr mutant, as measured in experimental endocarditis infections by target organ bacterial counts. Implications of our data are discussed in terms of agr antagonist strategies.


2001 ◽  
Vol 45 (10) ◽  
pp. 2908-2915 ◽  
Author(s):  
Thierry Naas ◽  
Sandrine Massuard ◽  
Fabien Garnier ◽  
Patrice Nordmann

ABSTRACT To further elucidate the induction process of the carbapenem-hydrolyzing β-lactamase of Ambler class A, NmcA,ampD genes of the wild-type (WT) strain and of ceftazidime-resistant mutants of Enterobacter cloacaeNOR-1 were cloned and tested in transcomplementation experiments. Ceftazidime-resistant E. cloacae NOR-1 mutants exhibited derepressed expression of the AmpC-type cephalosporinase and of the carbapenem-hydrolyzing β-lactamase NmcA. The ampD genes of Escherichia coli andE. cloacae WT NOR-1 transcomplemented the ceftazidime-resistant E. cloacae NOR-1 mutants to the WT level of β-lactamase expression, while the mutatedampD alleles of E. cloacaeNOR-1 failed to do so. The deduced E.cloacae NOR-1 WT AmpD protein exhibited 95 and 91% amino acid identity with the E. cloacaeO29 and E. cloacae 14 WT AmpD proteins, respectively. Of the 12 ceftazidime-resistant E.cloacae NOR-1 strains, 3 had AmpD proteins with amino acid changes, while the others had truncated AmpD proteins. Most of these mutations were located outside the conserved regions that link the AmpD proteins to the cell wall hydrolases. AmpD fromE. cloacae NOR-1 is involved in the regulation of expression of both β-lactamases (NmcA and AmpC), suggesting that structurally unrelated genes may be under the control of an identical genetic system.


2006 ◽  
Vol 50 (9) ◽  
pp. 3175-3178
Author(s):  
J. J. González-López ◽  
M. Sabaté ◽  
S. Lavilla ◽  
M. N. Larrosa ◽  
R. M. Bartolomé ◽  
...  

ABSTRACT Resistance to β-lactams and quinolones in two isogenic Enterobacter cloacae isolates was studied. One was susceptible to cefoxitin and amoxicillin-clavulanate. The other one showed its natural β-lactam resistance pattern. Both isolates had a nonfunctional AmpR regulator. However, within the second one, the presence of a plasmid carrying ampR and qnrA1 allowed reversion to the wild-type β-lactam resistance phenotype and decreased susceptibility to fluoroquinolones.


Sign in / Sign up

Export Citation Format

Share Document