scholarly journals Novel Model for Multispecies Biofilms That Uses Rigid Gas-Permeable Lenses

2011 ◽  
Vol 77 (10) ◽  
pp. 3413-3421 ◽  
Author(s):  
Rebecca Peyyala ◽  
Sreenatha S. Kirakodu ◽  
Jeffrey L. Ebersole ◽  
Karen F. Novak

ABSTRACTOral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novelin vitromodel system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprisingStreptococcus gordonii,Streptococcus oralis, andStreptococcus sanguinis;S. gordonii,Actinomyces naeslundii, andFusobacterium nucleatum; orS. gordonii,F. nucleatum, andPorphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues.

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4958
Author(s):  
Jessa Marie V. Makabenta ◽  
Jungmi Park ◽  
Cheng-Hsuan Li ◽  
Aritra Nath Chattopadhyay ◽  
Ahmed Nabawy ◽  
...  

Biofilm infections are a global public health threat, necessitating new treatment strategies. Biofilm formation also contributes to the development and spread of multidrug-resistant (MDR) bacterial strains. Biofilm-associated chronic infections typically involve colonization by more than one bacterial species. The co-existence of multiple species of bacteria in biofilms exacerbates therapeutic challenges and can render traditional antibiotics ineffective. Polymeric nanoparticles offer alternative antimicrobial approaches to antibiotics, owing to their tunable physico-chemical properties. Here, we report the efficacy of poly(oxanorborneneimide) (PONI)-based antimicrobial polymeric nanoparticles (PNPs) against multi-species bacterial biofilms. PNPs showed good dual-species biofilm penetration profiles as confirmed by confocal laser scanning microscopy. Broad-spectrum antimicrobial activity was observed, with reduction in both bacterial viability and overall biofilm mass. Further, PNPs displayed minimal fibroblast toxicity and high antimicrobial activity in an in vitro co-culture model comprising fibroblast cells and dual-species biofilms of Escherichia coli and Pseudomonas aeruginosa. This study highlights a potential clinical application of the presented polymeric platform.


2009 ◽  
Vol 58 (10) ◽  
pp. 1359-1366 ◽  
Author(s):  
Ali Al-Ahmad ◽  
Marie Follo ◽  
Ann-Carina Selzer ◽  
Elmar Hellwig ◽  
Matthias Hannig ◽  
...  

Oral biofilms are one of the greatest challenges in dental research. The present study aimed to investigate initial bacterial colonization of enamel surfaces in situ using fluorescence in situ hybridization (FISH) over a 12 h period. For this purpose, bovine enamel slabs were fixed on buccal sites of individual splints worn by six subjects for 2, 6 and 12 h to allow biofilm formation. Specimens were processed for FISH and evaluated with confocal laser-scanning microscopy, using probes for eubacteria, Streptococcus species, Veillonella species, Fusobacterium nucleatum and Actinomyces naeslundii. The number of adherent bacteria increased with time and all tested bacterial species were detected in the biofilm formed in situ. The general percentage composition of the eubacteria did not change over the investigated period, but the number of streptococci, the most frequently detected species, increased significantly with time (2 h: 17.7±13.8 %; 6 h: 20.0±16.6 %; 12 h: 24.7±16.1 %). However, ≤1 % of the surface was covered with bacteria after 12 h of biofilm formation in situ. In conclusion, FISH is an appropriate method for quantifying initial biofilm formation in situ, and the proportion of streptococci increases during the first 12 h of bacterial adherence.


2011 ◽  
Vol 55 (11) ◽  
pp. 5331-5337 ◽  
Author(s):  
Nianan He ◽  
Jian Hu ◽  
Huayong Liu ◽  
Tao Zhu ◽  
Beijian Huang ◽  
...  

ABSTRACTTreating biofilm infections on implanted medical devices is formidable, even with extensive antibiotic therapy. The aim of this study was to investigate whether ultrasound (US)-targeted microbubble (MB) destruction (UTMD) could enhance vancomycin activity againstStaphylococcus epidermidisRP62A biofilms. Twelve-hour biofilms were treated with vancomycin combined with UTMD. The vancomycin and MB (SonoVue) were used at concentrations of 100 μg/ml and 30% (vol/vol), respectively, in studiesin vitro. After US exposure (0.08 MHz, 1.0 W/cm2, 50% duty cycle, and 10-min duration), the biofilms were cultured at 37°C for another 12 h. The results showed that many micropores were found in biofilms treated with vancomycin combined with UTMD. Biofilm densities (A570values) and the viable counts ofS. epidermidisrecovered from the biofilm were significantly decreased compared with those of any other groups. Furthermore, the highest percentage of dead cells was found, using confocal laser scanning microscopy, in the biofilm treated with vancomycin combined with UTMD. The viable counts of bacteria in biofilms in anin vivorabbit model also confirmed the enhanced effect of vancomycin combined with UTMD. UTMD may have great potential for improving antibiotic activity against biofilm infections.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lukas Simon Kriem ◽  
Kevin Wright ◽  
Renzo Alberto Ccahuana-Vasquez ◽  
Steffen Rupp

Techniques for continuously monitoring the formation of subgingival biofilm, in relation to the determination of species and their accumulation over time in gingivitis and periodontitis, are limited. In recent years, advancements in the field of optical spectroscopic techniques have provided an alternative for analyzing three-dimensional microbiological structures, replacing the traditional destructive or biofilm staining techniques. In this work, we have demonstrated that the use of confocal Raman spectroscopy coupled with multivariate analysis provides an approach to spatially differentiate bacteria in an in vitro model simulating a subgingival dual-species biofilm. The present study establishes a workflow to evaluate and differentiate bacterial species in a dual-species in vitro biofilm model, using confocal Raman microscopy (CRM). Biofilm models of Actinomyces denticolens and Streptococcus oralis were cultured using the “Zürich in vitro model” and were analyzed using CRM. Cluster analysis was used to spatially differentiate and map the biofilm model over a specified area. To confirm the clustering of species in the cultured biofilm, confocal laser scanning microscopy (CLSM) was coupled with fluorescent in vitro hybridization (FISH). Additionally, dense bacteria interface area (DBIA) samples, as an imitation of the clusters in a biofilm, were used to test the developed multivariate differentiation model. This confirmed model was successfully used to differentiate species in a dual-species biofilm and is comparable to morphology. The results show that the developed workflow was able to identify main clusters of bacteria based on spectral “fingerprint region” information from CRM. Using this workflow, we have demonstrated that CRM can spatially analyze two-species in vitro biofilms, therefore providing an alternative technique to map oral multi-species biofilm models.


2011 ◽  
Vol 55 (12) ◽  
pp. 5887-5892 ◽  
Author(s):  
H. Maezono ◽  
Y. Noiri ◽  
Y. Asahi ◽  
M. Yamaguchi ◽  
R. Yamamoto ◽  
...  

ABSTRACTAntibiotic resistance of biofilm-grown bacteria contributes to chronic infections, such as marginal and periapical periodontitis, which are strongly associated withPorphyromonas gingivalis. Concurrent azithromycin (AZM) administration and mechanical debridement improve the clinical parameters of periodontal tissuein situ. We examined thein vitroefficacy of AZM againstP. gingivalisbiofilms. The susceptibilities of adherentP. gingivalisstrains 381, HW24D1, 6/26, and W83 to AZM, erythromycin (ERY), ampicillin (AMP), ofloxacin (OFX), and gentamicin (GEN) were investigated using a static model. The optical densities of adherentP. gingivaliscells were significantly decreased by using AZM and ERY at sub-MIC levels compared with those of the controls in all the strains tested, except for the effect of ERY on strain W83. AMP and OFX inhibitedP. gingivalisadherent cells at levels over their MICs, and GEN showed no inhibition in the static model. The effects of AZM and ERY against biofilm cells were investigated using a flow cell model. The ATP levels ofP. gingivalisbiofilms were significantly decreased by AZM at concentrations below the sub-MICs; however, ERY was not effective for inhibition ofP. gingivalisbiofilm cells at their sub-MICs. Furthermore, decreased density ofP. gingivalisbiofilms was observed three-dimensionally with sub-MIC AZM, using confocal laser scanning microscopy. These findings suggest that AZM is effective againstP. gingivalisbiofilms at sub-MIC levels and could have future clinical application for oral biofilm infections, such as chronic marginal and periapical periodontitis.


2012 ◽  
Vol 78 (24) ◽  
pp. 8703-8711 ◽  
Author(s):  
L. Karygianni ◽  
M. Follo ◽  
E. Hellwig ◽  
D. Burghardt ◽  
M. Wolkewitz ◽  
...  

ABSTRACTA microscopic method for noninvasively monitoring oral biofilms at the macroscale was developed to describe the spatial distribution of biofilms of different bacterial composition on bovine enamel surfaces (BES). For this purpose, oral biofilm was grownin situon BES that were fixed at approximal sites of individual upper jaw acrylic devices worn by a volunteer for 3 or 5 days. Eubacteria,Streptococcusspp., andFusobacterium nucleatumwere stained using specific fluorescencein situhybridization (FISH) probes. The resulting fluorescence signals were subsequently tested by confocal laser scanning microscopy (CLSM) and monitored by an automated wide-field microscope-based imaging platform (Scan∧R). Automated image processing and data analysis were conducted by microscope-associated software and followed by statistical evaluation of the results. The full segmentation of biofilm images revealed a random distribution of bacteria across the entire area of the enamel surfaces examined. Significant differences in the composition of the microflora were recorded across individual as well as between different enamel surfaces varying from sparsely colonized (47.26%) after 3 days to almost full surface coverage (84.45%) after 5 days. The enamel plates that were positioned at the back or in the middle of the oral cavity were found to be more suitable for the examination of biofilms up to 3 days old. In conclusion, automated microscopy combined with the use of FISH can enable the efficient visualization and meaningful quantification of bacterial composition over the entire sample surface. Due to the possibility of automation, Scan∧R overcomes the technical limitations of conventional CLSM.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Mette Kolpen ◽  
Peter Østrup Jensen ◽  
Tavs Qvist ◽  
Kasper Nørskov Kragh ◽  
Cecillie Ravnholt ◽  
...  

ABSTRACT Pulmonary infection with the multidrug-resistant Mycobacterium abscessus complex (MABSC) is difficult to treat in individuals with cystic fibrosis (CF). MABSC grows as biofilm aggregates in CF patient lungs, which are known to have anaerobic niches. How aggregation and anoxic conditions affect antibiotic tolerance is not well understood. We sought to determine whether disaggregation and oxygen availability sensitize MABSC isolates to recommended antibiotics. We tested the susceptibilities of 33 isolates from 22 CF patients with MABSC infection and a reference strain to the following antibiotics: amikacin, azithromycin, cefoxitin, ciprofloxacin, clarithromycin, imipenem, kanamycin, linezolid, moxifloxacin, rifampin, tigecycline, and sulfamethoxazole-trimethoprim. Isolates were grown in Mueller-Hinton broth with and without the disaggregating detergent Tween 80 (5%). Time-kill curves at days 1 and 3 were generated for oxic and anoxic amikacin treatment in 4-fold dilutions ranging from 2 to 512 mg liter−1. Scanning electron microscopy was used to visualize the aggregation patterns, while confocal laser scanning microscopy and microrespirometry were used to visualize biofilm growth patterns. Disruption of MABSC aggregates increased susceptibility to amikacin, tigecycline, kanamycin, azithromycin, imipenem, cefoxitin, and clarithromycin (P < 0.05, n = 29 to 31). Oxygenation enhanced the killing of disaggregated MABSC isolates by amikacin (P < 0.05) by 1 to 6 log units when 2 to 512 mg liter−1 of amikacin was used. This study explains why current drug susceptibility testing results correlate poorly with treatment outcomes. The conditions achieved by oxic culturing of planktonic isolates in vitro do not resemble the hypoxic conditions in CF patient lungs. Biofilm disruption and increased O2 availability during antibiotic therapy may be new therapeutic strategies for chronic MABSC infection.


2013 ◽  
Vol 57 (10) ◽  
pp. 5045-5052 ◽  
Author(s):  
Zheng Hou ◽  
Fei Da ◽  
Baohui Liu ◽  
Xiaoyan Xue ◽  
Xiuli Xu ◽  
...  

ABSTRACTStaphylococcus epidermidisis one of the most frequent causes of device-associated infections, because it is known to cause biofilms that grow on catheters or other surgical implants. The persistent increasing resistance ofS. epidermidisand other coagulase-negative staphylococci (CoNS) has driven the need for newer antibacterial agents with innovative therapeutic strategies. Thanatin is reported to display potent antibiotic activities, especially against extended-spectrum-beta-lactamase-producingEscherichia coli. The present study aimed to investigate whether a shorter derivative peptide (R-thanatin) could be used as a novel antibacterial agent. We found that R-thanatin was highly potentin vitroagainst coagulase-negative staphylococci, such asS. epidermidis,S. haemolyticus, andS. hominis, and inhibited biofilm formation at subinhibitory concentrations. Properties of little toxicity to human red blood cells (hRBCs) and human umbilical vein endothelial cells, a low incidence of resistance, and relatively high stability in plasma were confirmed. Excellentin vivoprotective effects were also observed using a methicillin-resistantS. epidermidis(MRSE)-induced urinary tract infection rat model. Electron microscopy and confocal laser-scanning microscopy analyses suggested that R-thanatin disturbed cell division of MRSE severely, which might be the reason for inhibition of MRSE growth. These findings indicate that R-thanatin is active against the growth and biofilm formation of MRSEin vitroandin vivo. R-thanatin might be considered as a specific drug candidate for treating CoNS infections.


Biofilms ◽  
2004 ◽  
Vol 1 (1) ◽  
pp. 5-12 ◽  
Author(s):  
J. S. Foster ◽  
P. C. Pan ◽  
P. E. Kolenbrander

Oral bacteria form mixed-species biofilms known as dental plaque. Growth of these complex microbial communities is often controlled with the use of antimicrobial mouthrinses. Novel laboratory methods for testing the efficacy of antimicrobials in situ are necessary to complement current clinical testing protocols. In this study, we examined the effects of antimicrobial agents on a streptococcal biofilm grown in a saliva-conditioned flowcell. The flowcell coupled with confocal laser scanning microscopy enabled examination of growing oral biofilms in situ without disruption of the microbial community. Biofilms composed of Streptococcus gordonii DL1 were grown in an in vitro flowcell and treated with several commercially available antimicrobial mouthrinses containing essential oils, triclosan, cetylpyridinium chloride/domiphen or chlorhexidine. The results of this study revealed varying abilities of the antimicrobial agents to cause cellular damage on the growing biofilm in situ. This study therefore demonstrated the usefulness of the flowcell in the rapid assessment of antimicrobial efficacy.


2014 ◽  
Vol 63 (2) ◽  
pp. 284-292 ◽  
Author(s):  
Phoebus Tsaousoglou ◽  
Sandor Nietzsche ◽  
Georg Cachovan ◽  
Anton Sculean ◽  
Sigrun Eick

The activity of moxifloxacin was compared with ofloxacin and doxycycline against bacteria associated with periodontitis within a biofilm (single strain and mixed population) in vitro. MICs and minimal bactericidal concentrations (MBCs) of moxifloxacin, ofloxacin and doxycyline were determined against single strains and mixed populations in a planktonic state. Single-species biofilms of two Porphyromonas gingivalis and two Aggregatibacter actinomycetemcomitans strains and a multispecies biofilm consisting of 12 species were formed for 3 days. The minimal biofilm eradication concentrations (MBECs) were determined after exposing the biofilms to the antibacterials (0.002–512 µg ml−1) for 18 h, addition of nutrient broth for 3 days and subsequent subcultivation. Photographs were taken using confocal laser-scanning microscopy and scanning electron microscopy. The MICs and MBCs did not differ between ofloxacin and moxifloxacin against A. actinomycetemcomitans, whilst moxifloxacin was more active than the other tested antibacterials against anaerobes and the mixed population. The single-species biofilms were eradicated by moderate concentrations of the antibacterials, and the lowest MBECs were always found for moxifloxacin (2–8 µg ml−1). MBECs against the multispecies biofilms were 128, >512 and >512 µg ml−1 for moxifloxacin, ofloxacin and doxycycline, respectively. In summary, moxifloxacin in a topical formulation may have potential as an adjunct to mechanical removal of the biofilms.


Sign in / Sign up

Export Citation Format

Share Document