scholarly journals Growth Kinetics of Hyphomicrobium and Thiobacillus spp. in Mixed Cultures Degrading Dimethyl Sulfide and Methanol

2010 ◽  
Vol 76 (16) ◽  
pp. 5423-5431 ◽  
Author(s):  
Alexander C. Hayes ◽  
Steven N. Liss ◽  
D. Grant Allen

ABSTRACT The growth kinetics of Hyphomicrobium spp. and Thiobacillus spp. on dimethyl sulfide (DMS) and methanol (in the case of Hyphomicrobium spp.) in an enrichment culture created from a biofilter cotreating DMS and methanol were studied. Specific growth rates of 0.099 h−1 and 0.11 h−1 were determined for Hyphomicrobium spp. and Thiobacillus spp., respectively, growing on DMS at pH 7. These specific growth rates are double the highest maximum specific growth rate for bacterial growth on DMS reported to date in the literature. When the pH of the medium was decreased from pH 7 to pH 5, the specific growth rate of Hyphomicrobium spp. decreased by 85%, with a near 100-fold decline in the yield of Hyphomicrobium 16S rRNA gene copies in the mixed culture. Through the same pH shift, the specific growth rate and 16S rRNA gene yield of Thiobacillus spp. remained similar. When methanol was used as a substrate, the specific growth rate of Hyphomicrobium spp. declined much less over the same pH range (up to 30%) while the yield of 16S rRNA gene copies declined by only 50%. Switching from an NH4 +-N-based source to a NO3 −-N-based source resulted in the same trends for the specific growth rate of these microorganisms with respect to pH. This suggests that pH has far more impact on the growth kinetics of these microorganisms than the nitrogen source. The results of these mixed-culture batch experiments indicate that the increased DMS removal rates observed in previous studies of biofilters cotreating DMS and methanol are due to the proliferation of DMS-degrading Hyphomicrobium spp. on methanol at pH levels not conducive to high growth rates on DMS alone.

1999 ◽  
Vol 46 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Urs Lendenmann ◽  
Mario Snozzi ◽  
Thomas Egli

Kinetic models for microbial growth describe the specific growth rate (μ) as a function of the concentration of the growth-limiting nutrient (s) and a set of parameters. A typical example is the model proposed by Monod, where μ is related to s using substrate affinity (Ks) and the maximum specific growth rate (μmax). The preferred method to determine such parameters is to grow microorganisms in continuous culture and to measure the concentration of the growth-limiting substrate as a function of the dilution rate. However, owing to the lack of analytical methods to quantify sugars in the microgram per litre range, it has not been possible to investigate the growth kinetics of Escherichia coli in chemostat culture. Using an HPLC method able to determine steady-state concentrations of reducing sugars, we previously have shown that the Monod model adequately describes glucose-limited growth of E. coli ML30. This has not been confirmed for any other sugar. Therefore, we carried out a similar study with galactose and found steady-state concentrations between 18 and 840 μg·L-1 for dilution rates between 0.2 and 0.8·h-1, respectively. With these data the parameters of several models giving the specific growth rate as a function of the substrate concentration were estimated by nonlinear parameter estimation, and subsequently, the models were evaluated statistically. From all equations tested, the Monod model described the data best. The parameters for galactose utilisation were μmax = 0.75·h-1 and Ks = 67 μg·L-1. The results indicated that accurate Ks values can be estimated from a limited set of steady-state data when employing μmax measured during balanced growth in batch culture. This simplified procedure was applied for maltose, ribose, and fructose. For growth of E. coli with these sugars, μmax and Ks were for maltose 0.87·h-1, 100 μg·L-1; for ribose 0.57·h-1, 132 μg·L-1, and for fructose 0.70·h-1, 125 μg·L-1. Key words: monod model, continuous culture, galactose, glucose, fructose, maltose, ribose.


Author(s):  
C. S. Richardson ◽  
D. Upadhyay ◽  
S. Mandjiny ◽  
L. Holmes

Bacillus thuringiensis (Bt) is a soil-dwelling, Gram-positive bacterium that is used as a biological pesticide and used to genetically engineer plants due to the toxic proteins it produces. B. thuringiensis was studied in batch cultures to determine the specific growth rates and doubling times. The purpose of this experiment was to research the growth kinetics of Bacillus thuringiensis in a 2L bioreactor and a 5L bioreactor containing growth media at different environmental conditions. Fermentation parameters were controlled by utilizing a Sartorius Stedim Biostat® A+ bioreactor system for bacterial growth. The environmental conditions included temperature, agitation, and aeration. The specific growth rates of B. thuringiensis were determined. The optimal conditions for the 2L bioreactor were 200 RPM, 30°C, 1.5 VVM, and with the highest specific growth rate 0.30 hr and the shortest doubling time 2.3 hr. For the 5L bioreactor, the optimal conditions were 150 RPM, 30°C, 1.5 VVM, and with the highest specific growth rate 1.2 hr and the fastest doubling time 0.6 hr.


1998 ◽  
Vol 64 (11) ◽  
pp. 4226-4233 ◽  
Author(s):  
Pim Van Hoek ◽  
Johannes P. Van Dijken ◽  
Jack T. Pronk

ABSTRACT The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrialSaccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D= 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 atD = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D= 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.


REAKTOR ◽  
2015 ◽  
Vol 14 (3) ◽  
pp. 187 ◽  
Author(s):  
Wijanarka Wijanarka ◽  
Endang Sutariningsih Soetarto ◽  
Kumala Dewi ◽  
Ari Indrianto

ACTIVITY OF INULINASE OF Pichia Manshuria AND FUSAN F4 ON BATCH FERMENTATION UDING DAHLIA TUBER (Dahlia sp) AS A SUBSTRATE. A dahlia tuber is one of the common inulin rich crops. Inulin is formed by units of fructans, which are polymers of D-fructose. Inulinases (EC 3.2.1.7) catalyze the hydrolysis of inulin, producing fructooligosaccharides (FOS), inulooligosaccharides (IOS), pulullan, acetone, butanol and sorbitol, therefore dahlia tubers are used as growth media. The inulin hydrolyzing activity has been reported from various microbial strains Pichia manshurica and Fusan F4 which is the result of fusion protoplast. The objective of this study was to determine the activity of inulinase Pichia manshurica and Fusan F4 on the substrate dahlia tubers. Fusan F4 to increase inulinase activity compared with Pichia manshurica and to investigate the kinetics of specific growth rate (μ) and time double (g) from of Pichia manshurica and Fusan F4. The results showed that the exponential phase occurs at 0-12 hour without a lag phase. P. manshurica has a specific growth rate (μ) of 0.18/hour with time double (g) 3.90 hours and the inulinase enzyme activity of 0.56 IU, while for Fusan F4 consecutive has a value μ of 0.20/hour, g of 3.49 hours and the activity of 0.69 IU. The conclusion of this research is to improve Fusan F4 inulinase activity and the ability has to be better than the Pichia manshurica.Umbi dahlia merupakan salah satu umbi yang mengandung inulin. Inulin merupakan polimer fruktan yang dapat dipecah oleh enzim inulinase (E.C. 3.2.1.7) menjadi fruktosa. Fruktosa merupakan bahan baku dasar untuk pembuatan FOS, IOS, pulullan, aseton dan sorbitol, oleh karena itu umbi dahlia digunakan sebagai media pertumbuhan. Enzim inulinase ini secara indigenous dimiliki oleh Pichia manshurica dan Fusan F4 yang merupakan hasil fusi protoplas.Tujuan  penelitian ini adalah  untuk mengetahui aktivitas inulinase Pichia manshurica dan Fusan F4 pada substrat umbi dahlia, Fusan F4 mampu meningkatkan aktivitas inulinase dibandingkan dengan Pichia manshurica serta untuk mengetahui kinetika kecepatan pertumbuhan specifik (µ) dan waktu generasi (g) Pichia manshurica dan Fusan F4. Hasil penelitian menunjukkan bahwa fase  eksponensial terjadi pada jam ke-0 sampai jam ke-12 tanpa diikuti fase lag, Pichia manshurica mempunyai kecepatan pertumbuhan specific (µ)  sebesar 0,18/jam dengan waktu generasi (g) 3,90 jam dan aktivitas enzim inulinase yang dihasilkan sebesar 0,56 IU, sedangkan untuk fusan F4 secara berturut-turut mempunyai nilai µ sebesar 0,20/jam, g sebesar 3,49 jam dan aktivitas sebesar 0,69 IU. Kesimpulan dari penelitian ini adalah Fusan F4 mampu meningkatkan aktivitas inulinase dan mempunyai kemampuan lebih baik dibanding dengan Pichia manshurica.


Microbiology ◽  
2005 ◽  
Vol 151 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Tiina M. Pakula ◽  
Katri Salonen ◽  
Jaana Uusitalo ◽  
Merja Penttilä

Trichoderma reesei was cultivated in chemostat cultures on lactose-containing medium. The cultures were characterized for growth, consumption of the carbon source and protein production. Secreted proteins were produced most efficiently at low specific growth rates, 0·022–0·033 h−1, the highest specific rate of total protein production being 4·1 mg g−1 h−1 at the specific growth rate 0·031 h−1. At low specific growth rates, up to 29 % of the proteins produced were extracellular, in comparison to only 6–8 % at high specific growth rates, 0·045–0·066 h−1. To analyse protein synthesis and secretion in more detail, metabolic labelling of proteins was applied to analyse production of the major secreted protein, cellobiohydrolase I (CBHI, Cel7A). Intracellular and extracellular labelled CBHI was quantified and analysed for pI isoforms in two-dimensional gels, and the synthesis and secretion rates of the molecule were determined. Both the specific rates of CBHI synthesis and secretion were highest at low specific growth rates, the optimum being at 0·031 h−1. However, at low specific growth rates the secretion rate/synthesis rate ratio was significantly lower than that at high specific growth rates, indicating that at low growth rates the capacity of cells to transport the protein becomes limiting. In accordance with the high level of protein production and limitation in the secretory capacity, the transcript levels of the unfolded protein response (UPR) target genes pdi1 and bip1 as well as the gene encoding the UPR transcription factor hac1 were induced.


2006 ◽  
Vol 54 (8) ◽  
pp. 155-162 ◽  
Author(s):  
Y. Mokhayeri ◽  
A. Nichols ◽  
S. Murthy ◽  
R. Riffat ◽  
P. Dold ◽  
...  

Facilities across North America are designing plants to meet stringent limits of technology (LOT) treatment for nitrogen removal (3–5 mg/L total effluent nitrogen). The anoxic capacity requirements for meeting LOT treatment are dependent on the growth rates of the denitrifying organisms. The Blue Plains Advanced Wastewater Treatment Plant (AWTP) is one of many facilities in the Chesapeake Bay region that is evaluating its ability to meet LOT treatment capability. The plant uses methanol as an external carbon source in a post-denitrification process. The process is very sensitive to denitrification in the winter. One approach to improve anoxic capacity utilization is to use an alternative substrate for denitrification in the winter to promote the growth of organisms that denitrify at higher rates. The aim of this study was to evaluate denitrification maximum specific growth rates for three substrates, acetate, corn syrup and methanol, at two temperatures (13 °C and 19 °C). These temperatures approximately reflect the minimum monthly and average annual wastewater temperature at the Blue Plains AWTP. The results suggest that the maximum specific growth rate (μmax) for corn syrup (1.3 d−1) and acetate (1.2 d−1) are higher than that for methanol (0.5 d−1) at low temperature of 13 °C. A similar trend was observed at 19 °C.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Javier Garrigós-Martínez ◽  
Miguel Angel Nieto-Taype ◽  
Arnau Gasset-Franch ◽  
José Luis Montesinos-Seguí ◽  
Xavier Garcia-Ortega ◽  
...  

Abstract Background The PAOX1-based expression system is the most widely used for producing recombinant proteins in the methylotrophic yeast Pichia pastoris (Komagataella phaffii). Despite relevant recent advances in regulation of the methanol utilization (MUT) pathway have been made, the role of specific growth rate (µ) in AOX1 regulation remains unknown, and therefore, its impact on protein production kinetics is still unclear. Results The influence of heterologous gene dosage, and both, operational mode and strategy, on culture physiological state was studied by cultivating the two PAOX1-driven Candida rugosa lipase 1 (Crl1) producer clones. Specifically, a clone integrating a single expression cassette of CRL1 was compared with one containing three cassettes over broad dilution rate and µ ranges in both chemostat and fed-batch cultivations. Chemostat cultivations allowed to establish the impact of µ on the MUT-related MIT1 pool which leads to a bell-shaped relationship between µ and PAOX1-driven gene expression, influencing directly Crl1 production kinetics. Also, chemostat and fed-batch cultivations exposed the favorable effects of increasing the CRL1 gene dosage (up to 2.4 fold in qp) on Crl1 production with no significant detrimental effects on physiological capabilities. Conclusions PAOX1-driven gene expression and Crl1 production kinetics in P. pastoris were successfully correlated with µ. In fact, µ governs MUT-related MIT1 amount that triggers PAOX1-driven gene expression—heterologous genes included—, thus directly influencing the production kinetics of recombinant protein.


2008 ◽  
Vol 74 (23) ◽  
pp. 7321-7328 ◽  
Author(s):  
Josh D. Neufeld ◽  
Rich Boden ◽  
Hélène Moussard ◽  
Hendrik Schäfer ◽  
J. Colin Murrell

ABSTRACT Marine microorganisms that consume one-carbon (C1) compounds are poorly described, despite their impact on global climate via an influence on aquatic and atmospheric chemistry. This study investigated marine bacterial communities involved in the metabolism of C1 compounds. These communities were of relevance to surface seawater and atmospheric chemistry in the context of a bloom that was dominated by phytoplankton known to produce dimethylsulfoniopropionate. In addition to using 16S rRNA gene fingerprinting and clone libraries to characterize samples taken from a bloom transect in July 2006, seawater samples from the phytoplankton bloom were incubated with 13C-labeled methanol, monomethylamine, dimethylamine, methyl bromide, and dimethyl sulfide to identify microbial populations involved in the turnover of C1 compounds, using DNA stable isotope probing. The [13C]DNA samples from a single time point were characterized and compared using denaturing gradient gel electrophoresis (DGGE), fingerprint cluster analysis, and 16S rRNA gene clone library analysis. Bacterial community DGGE fingerprints from 13C-labeled DNA were distinct from those obtained with the DNA of the nonlabeled community DNA and suggested some overlap in substrate utilization between active methylotroph populations growing on different C1 substrates. Active methylotrophs were affiliated with Methylophaga spp. and several clades of undescribed Gammaproteobacteria that utilized methanol, methylamines (both monomethylamine and dimethylamine), and dimethyl sulfide. rRNA gene sequences corresponding to populations assimilating 13C-labeled methyl bromide and other substrates were associated with members of the Alphaproteobacteria (e.g., the family Rhodobacteraceae), the Cytophaga-Flexibacter-Bacteroides group, and unknown taxa. This study expands the known diversity of marine methylotrophs in surface seawater and provides a comprehensive data set for focused cultivation and metagenomic analyses in the future.


REAKTOR ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 81 ◽  
Author(s):  
Marissa Widiyanti ◽  
Andri Cahyo Kumoro

Abstract THE KINETICS OF GADUNG (Dioscorea hispida dennst.) TUBER DETOXIFICATION VIA FUNGAL FERMENTATION USING Mucor racemosus. Bitter yam (Dioscorea hispida Dennst.) is one of carbohydrate sources used as staple food commonly found in Indonesian dry-land. However, this tuber has been underutilized due to the presence of an antinutrition compound, namely cyanogenic glucosides. Removal of cyanides from foodstuffs can be done either by physical, chemical or biological methods. In this study, the effect of time on the detoxification of gadung tuber chips from cyanides via fermentation using Mucor racemosus and its kinetics were investigated. Gadung chip samples were withdrawn from the fermentation system at every 24 hours interval for biomass and cyanides contents analysis. It was clear that the cyanides content decreased as the fermentation went by. Safely consumed gadung tuber chips were obtained from fermentation of the chips for 120 hours from which cyanides content as low as 49.41 mg/kg was achieved. The logistic equation successfully described the growth rate of Mucor racemosus under studied condition. The specific growth rate of Mucor racemosus in gadung chips was found to be 0.0297/hr or about a half of specific growth rate of that mold when grown in the readily consumed yeast-pepton-glucose (YPG) media. Keywords: fermentation; yam; monod; Mucor racemosus; cyanogen  Abstrak Umbi gadung (Dioscorea hispida Dennst.) merupakan salah satu sumber karbohidrat yang digunakan sebagai makanan pokok yang biasa ditemukan di lahan kering di wilayah Indonesia. Namun, umbi ini kurang dimanfaatkan karena adanya senyawa antinutrisi, yaitu cyanogenic glucosides. Penghilangan senyawa sianida dari bahan makanan dapat dilakukan baik dengan metode fisik, kimia atau biologi. Penelitian ini bertujuan untuk mengkaji pengaruh waktu pada detoksifikasi irisan umbi gadung dari senyawa sianida melalui fermentasi dengan menggunakan kapang Mucor racemosus dan kinetikanya. Cuplikan irisan umbi gadung diambil dari sistem fermentasi pada setiap jeda waktu 24 jam untuk dianalisis kadar biomassa dan sianidanya. Hasil penelitian menunjukkan bahwa kandungan sianida menurun seiring dengan bertambahnya waktu fermentasi. Irisan umbi gadung yang aman dikonsumsi dapat diperoleh dari fermentasi irisan ubi gadung selama 120 jam dengan kandungan sianida serendah 49,41 mg/kg. Persamaan logistik berhasil menggambarkan tingkat pertumbuhan kapang Mucor racemosus dengan baik. Tingkat pertumbuhan spesifik dari Mucor racemosus pada irisan umbi gadung adalah 0,0297/jam atau sekitar setengah dari laju pertumbuhan spesifik jamur tersebut saat dibudidayakan pada media yang siap dikonsumsi, seperti ragi-pepton-glukosa (YPG). Kata kunci: fermentasi; gadung; monod; Mucor racemosus; sianogen 


2005 ◽  
Vol 71 (5) ◽  
pp. 2239-2243 ◽  
Author(s):  
Neelakantam V. Narendranath ◽  
Ronan Power

ABSTRACT The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast.


Sign in / Sign up

Export Citation Format

Share Document