scholarly journals Growth Kinetics, Carbon Isotope Fractionation, and Gene Expression in the HyperthermophileMethanocaldococcus jannaschiiduring Hydrogen-Limited Growth and Interspecies Hydrogen Transfer

2019 ◽  
Vol 85 (9) ◽  
Author(s):  
Begüm D. Topçuoğlu ◽  
Cem Meydan ◽  
Tran B. Nguyen ◽  
Susan Q. Lang ◽  
James F. Holden

ABSTRACTHyperthermophilic methanogens are often H2limited in hot subseafloor environments, and their survival may be due in part to physiological adaptations to low H2conditions and interspecies H2transfer. The hyperthermophilic methanogenMethanocaldococcus jannaschiiwas grown in monoculture at high (80 to 83 μM) and low (15 to 27 μM) aqueous H2concentrations and in coculture with the hyperthermophilic H2producerThermococcus paralvinellae. The purpose was to measure changes in growth and CH4production kinetics, CH4fractionation, and gene expression inM. jannaschiiwith changes in H2flux. Growth and cell-specific CH4production rates ofM. jannaschiidecreased with decreasing H2availability and decreased further in coculture. However, cell yield (cells produced per mole of CH4produced) increased 6-fold whenM. jannaschiiwas grown in coculture rather than monoculture. Relative to high H2concentrations, isotopic fractionation of CO2to CH4(εCO2-CH4) was 16‰ larger for cultures grown at low H2concentrations and 45‰ and 56‰ larger forM. jannaschiigrowth in coculture on maltose and formate, respectively. Gene expression analyses showed H2-dependent methylene-tetrahydromethanopterin (H4MPT) dehydrogenase expression decreased and coenzyme F420-dependent methylene-H4MPT dehydrogenase expression increased with decreasing H2availability and in coculture growth. In coculture, gene expression decreased for membrane-bound ATP synthase and hydrogenase. The results suggest that H2availability significantly affects the CH4and biomass production and CH4fractionation by hyperthermophilic methanogens in their native habitats.IMPORTANCEHyperthermophilic methanogens and H2-producing heterotrophs are collocated in high-temperature subseafloor environments, such as petroleum reservoirs, mid-ocean ridge flanks, and hydrothermal vents. Abiotic flux of H2can be very low in these environments, and there is a gap in our knowledge about the origin of CH4in these habitats. In the hyperthermophileMethanocaldococcus jannaschii, growth yields increased as H2flux, growth rates, and CH4production rates decreased. The same trend was observed increasingly with interspecies H2transfer betweenM. jannaschiiand the hyperthermophilic H2producerThermococcus paralvinellae. With decreasing H2availability, isotopic fractionation of carbon during methanogenesis increased, resulting in isotopically more negative CH4with a concomitant decrease in H2-dependent methylene-tetrahydromethanopterin dehydrogenase gene expression and increase in F420-dependent methylene-tetrahydromethanopterin dehydrogenase gene expression. The significance of our research is in understanding the nature of hyperthermophilic interspecies H2transfer and identifying biogeochemical and molecular markers for assessing the physiological state of methanogens and possible source of CH4in natural environments.

2020 ◽  
Vol 202 (9) ◽  
Author(s):  
Tien G. Nguyen ◽  
Diego A. Vargas-Blanco ◽  
Louis A. Roberts ◽  
Scarlet S. Shell

ABSTRACT Regulation of gene expression is critical for Mycobacterium tuberculosis to tolerate stressors encountered during infection and for nonpathogenic mycobacteria such as Mycobacterium smegmatis to survive environmental stressors. Unlike better-studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5′ untranslated regions (UTRs) to mRNA half-life and translation efficiency are similarly unknown. In M. tuberculosis and M. smegmatis, the essential sigma factor, SigA, is encoded by a transcript with a relatively short half-life. We hypothesized that the long 5′ UTR of sigA causes this instability. To test this, we constructed fluorescence reporters and measured protein abundance, mRNA abundance, and mRNA half-life and calculated relative transcript production rates. The sigA 5′ UTR conferred an increased transcript production rate, shorter mRNA half-life, and decreased apparent translation rate compared to a synthetic 5′ UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts appeared to be translated with similar efficiency as those with the sigA 5′ UTR but had lower predicted transcript production rates. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein/mRNA ratios for leadered and leaderless transcripts, suggesting that variability in translation efficiency is largely driven by factors other than leader status. Our data are also discussed in light of an alternative model that leads to different conclusions and suggests leaderless transcripts may indeed be translated less efficiently. IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health problem killing 1.5 million people globally each year. During infection, M. tuberculosis must alter its gene expression patterns to adapt to the stress conditions it encounters. Understanding how M. tuberculosis regulates gene expression may provide clues for ways to interfere with the bacterium’s survival. Gene expression encompasses transcription, mRNA degradation, and translation. Here, we used Mycobacterium smegmatis as a model organism to study how 5′ untranslated regions affect these three facets of gene expression in multiple ways. We furthermore provide insight into the expression of leaderless mRNAs, which lack 5′ untranslated regions and are unusually prevalent in mycobacteria.


2013 ◽  
Vol 20 (9) ◽  
pp. 1440-1448 ◽  
Author(s):  
Michael H. Kogut ◽  
Kenneth J. Genovese ◽  
Haiqi He ◽  
Christina L. Swaggerty ◽  
Yiwei Jiang

ABSTRACTWe have been investigating modulation strategies tailored around the selective stimulation of the host's immune system as an alternative to direct targeting of microbial pathogens by antibiotics. One such approach is the use of a group of small cationic peptides (BT) produced by a Gram-positive soil bacterium,Brevibacillus texasporus. These peptides have immune modulatory properties that enhance both leukocyte functional efficiency and leukocyte proinflammatory cytokine and chemokine mRNA transcription activitiesin vitro. In addition, when provided as a feed additive for just 4 days posthatch, BT peptides significantly induce a concentration-dependent protection against cecal and extraintestinal colonization bySalmonella entericaserovar Enteritidis. In the present studies, we assessed the effects of feeding BT peptides on transcriptional changes on proinflammatory cytokines, inflammatory chemokines, and Toll-like receptors (TLR) in the ceca of broiler chickens with and withoutS. Enteritidis infection. After feeding a BT peptide-supplemented diet for the first 4 days posthatch, chickens were then challenged withS. Enteritidis, and intestinal gene expression was measured at 1 or 7 days postinfection (p.i.) (5 or 11 days of age). Intestinal expression of innate immune mRNA transcripts was analyzed by quantitative real-time PCR (qRT-PCR). Analysis of relative mRNA expression showed that a BT peptide-supplemented diet did not directly induce the transcription of proinflammatory cytokine, inflammatory chemokine, type I/II interferon (IFN), or TLR mRNA in chicken cecum. However, feeding the BT peptide-supplemented diet primed cecal tissue for increased (P≤ 0.05) transcription of TLR4, TLR15, and TLR21 upon infection withS. Enteritidis on days 1 and 7 p.i. Likewise, feeding the BT peptides primed the cecal tissue for increased transcription of proinflammatory cytokines (interleukin 1β [IL-1β], IL-6, IL-18, type I and II IFNs) and inflammatory chemokine (CxCLi2) in response toS. Enteritidis infection 1 and 7 days p.i. compared to the chickens fed the basal diet. These small cationic peptides may prove useful as alternatives to antibiotics as local immune modulators in neonatal poultry by providing prophylactic protection againstSalmonellainfections.


2021 ◽  
Vol 9 (2) ◽  
pp. 255
Author(s):  
Angelo Iacobino ◽  
Giovanni Piccaro ◽  
Manuela Pardini ◽  
Lanfranco Fattorini ◽  
Federico Giannoni

Previous studies on Escherichia coli demonstrated that sub-minimum inhibitory concentration (MIC) of fluoroquinolones induced the SOS response, increasing drug tolerance. We characterized the transcriptional response to moxifloxacin in Mycobacterium tuberculosis. Reference strain H37Rv was treated with moxifloxacin and gene expression studied by qRT-PCR. Five SOS regulon genes, recA, lexA, dnaE2, Rv3074 and Rv3776, were induced in a dose- and time-dependent manner. A range of moxifloxacin concentrations induced recA, with a peak observed at 2 × MIC (0.25 μg/mL) after 16 h. Another seven SOS responses and three DNA repair genes were significantly induced by moxifloxacin. Induction of recA by moxifloxacin was higher in log-phase than in early- and stationary-phase cells, and absent in dormant bacilli. Furthermore, in an H37Rv fluoroquinolone-resistant mutant carrying the D94G mutation in the gyrA gene, the SOS response was induced at drug concentrations higher than the mutant MIC value. The 2 × MIC of moxifloxacin determined no significant changes in gene expression in a panel of 32 genes, except for up-regulation of the relK toxin and of Rv3290c and Rv2517c, two persistence-related genes. Overall, our data show that activation of the SOS response by moxifloxacin, a likely link to increased mutation rate and persister formation, is time, dose, physiological state and, possibly, MIC dependent.


2015 ◽  
Vol 81 (7) ◽  
pp. 2466-2473 ◽  
Author(s):  
Muhammad Farhan Ul-Haque ◽  
Bhagyalakshmi Kalidass ◽  
Alexey Vorobev ◽  
Bipin S. Baral ◽  
Alan A. DiSpirito ◽  
...  

ABSTRACTMethanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced byMethylosinus trichosporiumOB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. WhenMethylosinus trichosporiumOB3b was grown in the presence of 1 μM CuCl2, expression ofmmoX, encoding a subunit of the hydroxylase component of sMMO, was very low.mmoXexpression increased, however, when methanobactin fromMethylocystissp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated withM. trichosporiumOB3b. IfM. trichosporiumOB3b was grown in the absence of CuCl2, themmoXexpression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure ofMethylosinus trichosporiumOB3b to SB2-Mb had no effect on expression ofmbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2.mbnAexpression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin “piracy” may be commonplace.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Shira Milo-Cochavi ◽  
Sheera Adar ◽  
Shay Covo

ABSTRACT The ability to withstand UV damage shapes the ecology of microbes. While mechanisms of UV tolerance were extensively investigated in microorganisms regularly exposed to the sun, far less is known about UV repair of soilborne microorganisms. Fusarium oxysporum is a soilborne fungal plant pathogen that is resistant to UV light. We hypothesized that its UV repair capacity is induced to deal with irregular sun exposure. Unlike the SOS paradigm, our analysis revealed only sporadic increases and even decreases in UV repair gene expression following UVC irradiation or exposure to visible light. Strikingly, a major factor determining the expression of UV repair genes was the developmental status of the fungus. At the early stages of germination, the expression of photolyase increased while the expression of UV endonuclease decreased, and then the trend was reversed. These gene expression oscillations were dependent on cell cycle progression. Consequently, the contribution of photoreactivation to UV repair and survival was stronger at the beginning of germination than later when a filament was established. F. oxysporum germinates following cues from the host. Early on in germination, it is most vulnerable to UV; when the filament is established, the pathogen is protected from the sun because it is already within the host tissue. IMPORTANCE Fusarium oxysporum infects plants through the roots and therefore is not exposed to the sun regularly. However, the ability to survive sun exposure expands the distribution of the population. UV from the sun is toxic and mutagenic, and to survive sun exposure, fungi encode several DNA repair mechanisms. We found that Fusarium oxysporum has a gene expression program that activates photolyase at the first hours of germination when the pathogen is not established in the plant tissue. Later on, the expression of photolyase decreases, and the expression of a light-independent UV repair mechanism increases. We suggest a novel point of view to a very fundamental question of how soilborne microorganisms defend themselves against sudden UV exposure.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin G. Sanchez ◽  
Micah J. Ferrell ◽  
Alexandra E. Chirakos ◽  
Kathleen R. Nicholson ◽  
Robert B. Abramovitch ◽  
...  

ABSTRACT Pathogenic mycobacteria encounter multiple environments during macrophage infection. Temporally, the bacteria are engulfed into the phagosome, lyse the phagosomal membrane, and interact with the cytosol before spreading to another cell. Virulence factors secreted by the mycobacterial ESX-1 (ESAT-6-system-1) secretion system mediate the essential transition from the phagosome to the cytosol. It was recently discovered that the ESX-1 system also regulates mycobacterial gene expression in Mycobacterium marinum (R. E. Bosserman, T. T. Nguyen, K. G. Sanchez, A. E. Chirakos, et al., Proc Natl Acad Sci U S A 114:E10772–E10781, 2017, https://doi.org/10.1073/pnas.1710167114), a nontuberculous mycobacterial pathogen, and in the human-pathogenic species M. tuberculosis (A. M. Abdallah, E. M. Weerdenburg, Q. Guan, R. Ummels, et al., PLoS One 14:e0211003, 2019, https://doi.org/10.1371/journal.pone.0211003). It is not known how the ESX-1 system regulates gene expression. Here, we identify the first transcription factor required for the ESX-1-dependent transcriptional response in pathogenic mycobacteria. We demonstrate that the gene divergently transcribed from the whiB6 gene and adjacent to the ESX-1 locus in mycobacterial pathogens encodes a conserved transcription factor (MMAR_5438, Rv3863, now espM). We prove that EspM from both M. marinum and M. tuberculosis directly and specifically binds the whiB6-espM intergenic region. We show that EspM is required for ESX-1-dependent repression of whiB6 expression and for the regulation of ESX-1-associated gene expression. Finally, we demonstrate that EspM functions to fine-tune ESX-1 activity in M. marinum. Taking the data together, this report extends the esx-1 locus, defines a conserved regulator of the ESX-1 virulence pathway, and begins to elucidate how the ESX-1 system regulates gene expression. IMPORTANCE Mycobacterial pathogens use the ESX-1 system to transport protein substrates that mediate essential interactions with the host during infection. We previously demonstrated that in addition to transporting proteins, the ESX-1 secretion system regulates gene expression. Here, we identify a conserved transcription factor that regulates gene expression in response to the ESX-1 system. We demonstrate that this transcription factor is functionally conserved in M. marinum, a pathogen of ectothermic animals; M. tuberculosis, the human-pathogenic species that causes tuberculosis; and M. smegmatis, a nonpathogenic mycobacterial species. These findings provide the first mechanistic insight into how the ESX-1 system elicits a transcriptional response, a function of this protein transport system that was previously unknown.


2018 ◽  
Vol 200 (8) ◽  
Author(s):  
Kevin D. Mlynek ◽  
William E. Sause ◽  
Derek E. Moormeier ◽  
Marat R. Sadykov ◽  
Kurt R. Hill ◽  
...  

ABSTRACTStaphylococcus aureussubverts innate defenses during infection in part by killing host immune cells to exacerbate disease. This human pathogen intercepts host cues and activates a transcriptional response via theS. aureusexoprotein expression (SaeR/SaeS [SaeR/S]) two-component system to secrete virulence factors critical for pathogenesis. We recently showed that the transcriptional repressor CodY adjusts nuclease (nuc) gene expression via SaeR/S, but the mechanism remained unknown. Here, we identified two CodY binding motifs upstream of thesaeP1 promoter, which suggested direct regulation by this global regulator. We show that CodY shares a binding site with the positive activator SaeR and that alleviating direct CodY repression at this site is sufficient to abrogate stochastic expression, suggesting that CodY repressessaeexpression by blocking SaeR binding. Epistasis experiments support a model that CodY also controlssaeindirectly through Agr and Rot-mediated repression of thesaeP1 promoter. We also demonstrate that CodY repression ofsaerestrains production of secreted cytotoxins that kill human neutrophils. We conclude that CodY plays a previously unrecognized role in controlling virulence gene expression via SaeR/S and suggest a mechanism by which CodY acts as a master regulator of pathogenesis by tying nutrient availability to virulence gene expression.IMPORTANCEBacterial mechanisms that mediate the switch from a commensal to pathogenic lifestyle are among the biggest unanswered questions in infectious disease research. Since the expression of most virulence genes is often correlated with nutrient depletion, this implies that virulence is a response to the lack of nourishment in host tissues and that pathogens likeS. aureusproduce virulence factors in order to gain access to nutrients in the host. Here, we show that specific nutrient depletion signals appear to be funneled to the SaeR/S system through the global regulator CodY. Our findings reveal a strategy by whichS. aureusdelays the production of immune evasion and immune-cell-killing proteins until key nutrients are depleted.


2013 ◽  
Vol 79 (8) ◽  
pp. 2813-2817 ◽  
Author(s):  
Yinzhao Wang ◽  
Wei Lin ◽  
Jinhua Li ◽  
Yongxin Pan

ABSTRACTKnowledge of the diversity of magnetotactic bacteria in natural environments is crucial for understanding their contribution to various biological and geological processes. Here we report a high diversity of magnetotactic bacteria in a freshwater site. Ten out of 18 operational taxonomic units (OTUs) were affiliated with theDeltaproteobacteria. Some rod-shaped bacteria simultaneously synthesized greigite and magnetite magnetosomes.


2011 ◽  
Vol 77 (10) ◽  
pp. 3406-3412 ◽  
Author(s):  
Gino Vrancken ◽  
Luc De Vuyst ◽  
Tom Rimaux ◽  
Joke Allemeersch ◽  
Stefan Weckx

ABSTRACTSourdough is a very competitive and challenging environment for microorganisms. Usually, a stable microbiota composed of lactic acid bacteria (LAB) and yeasts dominates this ecosystem. Although sourdough is rich in carbohydrates, thus providing an ideal environment for microorganisms to grow, its low pH presents a particular challenge. The nature of the adaptation to this low pH was investigated forLactobacillus plantarumIMDO 130201, an isolate from a laboratory wheat sourdough fermentation. Batch fermentations were carried out in wheat sourdough simulation medium, and total RNA was isolated from mid-exponential-growth-phase cultures, followed by differential gene expression analysis using a LAB functional gene microarray. At low pH values, an increased expression of genes involved in peptide and amino acid metabolism was found as well as that of genes involved in plantaricin production and lipoteichoic acid biosynthesis. The results highlight cellular mechanisms that allowL. plantarumto function at a low environmental pH.


Sign in / Sign up

Export Citation Format

Share Document