scholarly journals Isolation and Characterization of a Sex-Specific Lectin in a Marine Red Alga, Aglaothamnion oosumiense Itono

2012 ◽  
Vol 78 (20) ◽  
pp. 7283-7289 ◽  
Author(s):  
Jong Won Han ◽  
Tatyana A. Klochkova ◽  
Jun Bo Shim ◽  
Kangsup Yoon ◽  
Gwang Hoon Kim

ABSTRACTIn red algae, spermatial binding to female trichogynes is mediated by a lectin-carbohydrate complementary system.Aglaothamnion oosumienseis a microscopic filamentous red alga. The gamete recognition and binding occur at the surface of the hairlike trichogyne on the female carpogonium. Male spermatia are nonmotile. Previous studies suggested the presence of a lectin responsible for gamete recognition on the surface of female trychogynes. A novelN-acetyl-d-galactosamine-specific protein was isolated from female plants ofA. oosumienseby affinity chromatography and named AOL1. The lectin was monomeric and did not agglutinate horse blood or human erythrocytes. The N-terminal amino acid sequence of the protein was analyzed, and degenerate primers were designed. A full-length cDNA encoding the lectin was obtained using rapid amplification of cDNA ends-PCR (RACE-PCR). The cDNA was 1,095 bp in length and coded for a protein of 259 amino acids with a deduced molecular mass of 21.4 kDa, which agreed well with the protein data. PCR analysis using genomic DNA showed that both male and female plants have this gene. However, Northern blotting and two-dimensional electrophoresis showed that this protein was expressed 12 to 15 times more in female plants. The lectin inhibited spermatial binding to the trichogynes when preincubated with spermatia, suggesting its involvement in gamete binding.

2011 ◽  
Vol 55 (10) ◽  
pp. 4606-4612 ◽  
Author(s):  
François Lebreton ◽  
Florence Depardieu ◽  
Nancy Bourdon ◽  
Marguerite Fines-Guyon ◽  
Pierre Berger ◽  
...  

ABSTRACTEnterococcus faeciumUCN71, isolated from a blood culture, was resistant to low levels of vancomycin (MIC, 16 μg/ml) but susceptible to teicoplanin (MIC, 0.5 μg/ml). No amplification was observed with primers specific for the previously described glycopeptide resistance ligase genes, but a PCR product corresponding to a gene calledvanNwas obtained using degenerate primers and was sequenced. The deduced VanN protein was related (65% identity) to thed-alanine:d-serine VanL ligase. The organization of thevanNgene cluster, determined using degenerate primers and by thermal asymmetric interlaced (TAIL)-PCR, was similar to that of thevanCoperons. A single promoter upstream from the resistance operon was identified by rapid amplification of cDNA ends (RACE)-PCR. The presence of peptidoglycan precursors ending ind-serine andd,d-peptidase activities in the absence of vancomycin indicated constitutive expression of the resistance operon. VanN-type resistance was transferable by conjugation toE. faecium. This is the first report of transferabled-Ala-d-Ser-type resistance inE. faecium.


2015 ◽  
Vol 197 (10) ◽  
pp. 1757-1768 ◽  
Author(s):  
Felicia Y. Y. Tan ◽  
Mirka E. Wörmann ◽  
Edmund Loh ◽  
Christoph M. Tang ◽  
Rachel M. Exley

ABSTRACTExpression of type four pili (Tfp) is essential for virulence inNeisseria meningitidis. Pili mediate adhesion, bacterial aggregation, and DNA uptake. InN. meningitidis, the major pilin subunit is encoded by thepilEgene. In some strains, PilE is subject to phase and antigenic variation, which can alter Tfp properties and together offer a possible mechanism of immune escape. Pilin expression and antigenic variation can be modulated in response to environmental cues; however, the precise mechanisms of such regulation remain unclear. We identified a promoter in thepilElocus, 3′ of thepilEcoding sequence, on the antisense (AS) strand which is conserved in meningococci. We show that this promoter directs transcription of an AS RNA that is expressed during specific growth phases and in response to salt stress. Furthermore, we demonstrate that the transcript encompasses sequences complementary to the entirepilEcoding sequence and 5′ untranslated region. AS RNAs can regulate the gene on the sense strand by altering transcript stability or translation. However, by using Northern blotting, quantitative reverse transcription-PCR (RT-PCR), and Western blotting, we found no significant AS RNA-dependent changes inpilEtranscript or protein level. Instead, our data indicate that the AS RNA influences pilin antigenic variation. This work provides further insights into the complex regulation of pilin expression and variation in pathogenicNeisseria.IMPORTANCEPathogenicNeisseriaspp. express type four pili (Tfp) which are important for adhesion, aggregation and transformation. Some strains ofN. meningitidisare able to vary the sequence of the major subunit (PilE) of the Tfp. The mechanisms underlying this variation are not fully defined, but the process requires several noncoding elements that are found adjacent to thepilEgene. In this work, we identified acis-encoded RNA antisense topilEinN. meningitidis. By using Northern blotting and RT-PCR analysis, we found that the RNA is expressed in stationary phase or following salt stress. Our work also indicates that this RNA does not significantly affectpilEor pilin expression levels but instead appears to modulate pilin variation.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Babita Adhikari Dhungel ◽  
Revathi Govind

ABSTRACT Clostridioides difficile is the leading cause of nosocomial infection and is the causative agent of antibiotic-associated diarrhea. The severity of the disease is directly associated with toxin production, and spores are responsible for the transmission and persistence of the organism. Previously, we characterized sin locus regulators SinR and SinR′ (we renamed it SinI), where SinR is the regulator of toxin production and sporulation. The SinI regulator acts as its antagonist. In Bacillus subtilis, Spo0A, the master regulator of sporulation, controls SinR by regulating the expression of its antagonist, sinI. However, the role of Spo0A in the expression of sinR and sinI in C. difficile had not yet been reported. In this study, we tested spo0A mutants in three different C. difficile strains, R20291, UK1, and JIR8094, to understand the role of Spo0A in sin locus expression. Western blot analysis revealed that spo0A mutants had increased SinR levels. Quantitative reverse transcription-PCR (qRT-PCR) analysis of its expression further supported these data. By carrying out genetic and biochemical assays, we show that Spo0A can bind to the upstream region of this locus to regulates its expression. This study provides vital information that Spo0A regulates the sin locus, which controls critical pathogenic traits such as sporulation, toxin production, and motility in C. difficile. IMPORTANCE Clostridioides difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. During infection, C. difficile spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. In C. difficile, the sin locus is known to regulate both sporulation and toxin production. In this study, we show that Spo0A, the master regulator of sporulation, controls sin locus expression. Results from our study suggest that Spo0A directly regulates the expression of this locus by binding to its upstream DNA region. This observation adds new detail to the gene regulatory network that connects sporulation and toxin production in this pathogen.


2011 ◽  
Vol 78 (2) ◽  
pp. 334-345 ◽  
Author(s):  
Tsvetan R. Bachvaroff ◽  
Sunju Kim ◽  
Laure Guillou ◽  
Charles F. Delwiche ◽  
D. Wayne Coats

ABSTRACTThe genusEuduboscquellais one of a few described genera within the syndinean dinoflagellates, an enigmatic lineage with abundant diversity in marine environmental clone libraries based on small subunit (SSU) rRNA. The region composed of the SSU through to the partial large subunit (LSU) rRNA was determined from 40 individual tintinnid ciliate loricae infected withEuduboscquellasampled from eight surface water sites in the Northern Hemisphere, producing seven distinct SSU sequences. The corresponding host SSU rRNA region was also amplified from eight host species. The SSU tree ofEuduboscquellaand syndinean group I sequences from environmental clones had seven well-supported clades and one poorly supported clade across data sets from 57 to 692 total sequences. The genusEuduboscquellaconsistently formed a supported monophyletic clade within a single subclade of group I sequences. For most parasites with identical SSU sequences, the more variable internal transcribed spacer (ITS) to LSU rRNA regions were polymorphic at 3 to 10 sites. However, inE. cachonithere was variation between ITS to LSU copies at up to 20 sites within an individual, while in a parasite ofTintinnopsisspp., variation between different individuals ranged up to 19 polymorphic sites. However, applying the compensatory base change model to the ITS2 sequences suggested no compensatory changes within or between individuals with the same SSU sequence, while one to four compensatory changes between individuals with similar but not identical SSU sequences were found. Comparisons between host and parasite phylogenies do not suggest a simple pattern of host or parasite specificity.


2000 ◽  
Vol 74 (21) ◽  
pp. 10176-10186 ◽  
Author(s):  
T. Yamaguchi ◽  
S. L. Kaplan ◽  
P. Wakenell ◽  
K. A. Schat

ABSTRACT The QT35 cell line was established from a methylcholanthrene-induced tumor in Japanese quail (Coturnix coturnix japonica) (C. Moscovici, M. G. Moscovici, H. Jimenez, M. M. Lai, M. J. Hayman, and P. K. Vogt, Cell 11:95–103, 1977). Two independently maintained sublines of QT35 were found to be positive for Marek's disease virus (MDV)-like genes by Southern blotting and PCR assays. Sequence analysis of fragments of the ICP4, ICP22, ICP27, VP16, meq, pp14, pp38, open reading frame (ORF) L1, and glycoprotein B (gB) genes showed a strong homology with the corresponding fragments of MDV genes. Subsequently, a serotype 1 MDV-like herpesvirus, tentatively name QMDV, was rescued from QT35 cells in chicken kidney cell (CKC) cultures established from 6- to 9-day-old chicks inoculated at 8 days of embryonation with QT35 cells. Transmission electron microscopy failed to show herpesvirus particles in QT35 cells, but typical intranuclear herpesvirus particles were detected in CKCs. Reverse transcription-PCR analysis showed that the following QMDV transcripts were present in QT35 cells: sense and antisense meq, ORF L1, ICP4, and latency-associated transcripts, which are antisense to ICP4. A transcript of approximately 4.5 kb was detected by Northern blotting using total RNA from QT35 cells. Inoculation of QT35 cells with herpesvirus of turkeys (HVT)-infected chicken embryo fibroblasts (CEF) but not with uninfected CEF resulted in the activation of ICP22, ICP27, VP16, pp38, and gB. In addition, the level of ICP4 mRNA was increased compared to that in QT35 cells. The activation by HVT resulted in the production of pp38 protein. It was not possible to detect if the other activated genes were translated due to the lack of serotype 1-specific monoclonal antibodies.


Biologia ◽  
2012 ◽  
Vol 67 (2) ◽  
Author(s):  
Gang Zhang ◽  
Chao Song ◽  
Ming-Ming Zhao ◽  
Biao Li ◽  
Shun-Xing Guo

AbstractCyclin-dependent kinases (CDKs) play an essential role in cell cycle regulation during the embryonic and postembryonic development of organisms. To better understand the molecular mechanisms of CDKs involved in embryogenesis regulation in the endangered medicinal plant Dendrobium candidum Wall. ex Lindl., a 1229-bp full-length cDNA of an A-type CDK gene, Denca;CDKA;1, was identified using 3′ rapid amplification of cDNA end (RACE) PCR. Denca;CDKA;1 was predicted to encode a 294 amino acid residue-long protein of 33.76 kDa with an isoelectric point of 7.72. The deduced Denca;CDKA;1 protein contained a conserved serine/threonine-protein kinase domain (S-TKc) and a canonical cyclinbinding “PSTAIRE” motif. Multiple sequence alignment indicated that members of CDKA family from various plants exhibited a high degree of sequence identity ranging from 82% to 93%. A neighbor-joining phylogenetic tree showed that Denca;CDKA;1 was clustered into the plant group and was distant from the animal and fungal groups. The modeled three-dimensional structure of Denca;CDKA;1 exhibited the similar functional structure of a fold consisting of β-sheets and α-helices joined by discontinuous random coils forming two relatively independent lobes. Quantitative real-time PCR analysis revealed that Denca;CDKA;1 transcripts were the most abundant in protocorm-like bodies with 4.76 fold, followed by that in roots (4.19 fold), seeds (2.57 fold), and stems (1.57 fold). This study characterized the novel Denca;CDKA;1 gene from D. candidum for the first time and the results will be useful for further functional determination of the gene.


2021 ◽  
Vol 70 (9) ◽  
Author(s):  
Berta Fidalgo ◽  
Elisa Rubio ◽  
Victor Pastor ◽  
Marta Parera ◽  
Clara Ballesté-Delpierre ◽  
...  

Introduction. The identification of enteropathogens is critical for the clinical management of patients with suspected gastrointestinal infection. The FLOW multiplex PCR system (FMPS) is a semi-automated platform (FLOW System, Roche) for multiplex real-time PCR analysis. Hypothesis/Gap Statement. FMPS has greater sensitivity for the detection of enteric pathogens than standard methods such as culture, biochemical identification, immunochromatography or microscopic examination. Aim.The diagnostic performance of the FMPS was evaluated and compared to that of traditional microbiological procedures. Methodology. A total of 10 659 samples were collected and analysed over a period of 7 years. From 2013 to 2018 (every July to September), samples were processed using standard microbiological culture methods. In 2019, the FMPS was implemented using real-time PCR to detect the following enteropathogens: Shigella spp., Salmonella spp., Campylobacter spp., Giardia intestinalis, Entamoeba histolytica, Blastocystis hominis, Cryptosporidum spp., Dientamoeba fragilis, adenovirus, norovirus and rotavirus. Standard microbiological culture methods (2013–2018) included stool culture, microscopy and immunochromatography. Results. A total of 1078 stool samples were analysed prospectively using the FMPS from July to September (2019): bacterial, parasitic and viral pathogens were identified in 15.3, 9.71 and 5.29 % of cases, respectively. During the same period of 6 years (2013–2018), the proportion of positive identifications using standard microbiological methods from 2013 to 2018 was significantly lower. A major significant recovery improvement was observed for all bacteria species tested: Shigella spp./enteroinvasive Escherichia coli (EIEC) (P <0.05), Salmonella spp. (P <0.05) and Campylobacter spp. (P <0.05). Marked differences were also observed for the parasites G. intestinalis, Cryptosporidium spp. and D. fragilis. Conclusion. These results support the value of multiplex real-time PCR analysis for the detection of enteric pathogens in laboratory diagnosis with outstanding performance in identifying labile micro-organisms. The identification of unsuspected micro-organisms for less specific clinical presentations may also impact on clinical practice and help optimize patient management.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Eugenia Bifeld ◽  
Stephan Lorenzen ◽  
Katharina Bartsch ◽  
Juan-José Vasquez ◽  
T. Nicolai Siegel ◽  
...  

ABSTRACT The 90-kDa heat shock protein (HSP90) of eukaryotes is a highly abundant and essential chaperone required for the maturation of regulatory and signal proteins. In the protozoan parasite Leishmania donovani, causative agent of the fatal visceral leishmaniasis, HSP90 activity is essential for cell proliferation and survival. Even more importantly, its inhibition causes life cycle progression from the insect stage to the pathogenic, mammalian stage. To unravel the molecular impact of HSP90 activity on the parasites’ gene expression, we performed a ribosome profiling analysis of L. donovani, comparing genome-wide protein synthesis patterns in the presence and absence of the HSP90-specific inhibitor radicicol and an ectopically expressed radicicol-resistant HSP90 variant. We find that ribosome-protected RNA faithfully maps open reading frames and represents 97% of the annotated protein-coding genes of L. donovani. Protein synthesis was found to correlate poorly with RNA steady-state levels, indicating a regulated translation as primary mechanism for HSP90-dependent gene expression. The results confirm inhibitory effects of HSP90 on the synthesis of Leishmania proteins that are associated with the pathogenic, intracellular stage of the parasite. Those include heat shock proteins, redox enzymes, virulence-enhancing surface proteins, proteolytic pathways, and a complete set of histones. Conversely, HSP90 promotes fatty acid synthesis enzymes. Complementing radicicol treatment with the radicicol-resistant HSP90rr variant revealed important off-target radicicol effects that control a large number of the above-listed proteins. Leishmania lacks gene-specific transcription regulation and relies on regulated translation instead. Our ribosome footprinting analysis demonstrates a controlling function of HSP90 in stage-specific protein synthesis but also significant, HSP90-independent effects of the inhibitor radicicol. IMPORTANCE Leishmania parasites cause severe illness in humans and animals. They exist in two developmental stages, insect form and mammalian form, which differ in shape and gene expression. By mapping and quantifying RNA fragments protected by protein synthesis complexes, we determined the rates of protein synthesis for >90% of all Leishmania proteins in response to the inhibition of a key regulatory protein, the 90-kDa heat shock protein. We find that Leishmania depends on a regulation of protein synthesis for controlling its gene expression and that heat shock protein 90 inhibition can trigger the developmental program from insect form to mammalian form of the pathogen.


Sign in / Sign up

Export Citation Format

Share Document