scholarly journals Spo0A Suppresses sin Locus Expression in Clostridioides difficile

mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Babita Adhikari Dhungel ◽  
Revathi Govind

ABSTRACT Clostridioides difficile is the leading cause of nosocomial infection and is the causative agent of antibiotic-associated diarrhea. The severity of the disease is directly associated with toxin production, and spores are responsible for the transmission and persistence of the organism. Previously, we characterized sin locus regulators SinR and SinR′ (we renamed it SinI), where SinR is the regulator of toxin production and sporulation. The SinI regulator acts as its antagonist. In Bacillus subtilis, Spo0A, the master regulator of sporulation, controls SinR by regulating the expression of its antagonist, sinI. However, the role of Spo0A in the expression of sinR and sinI in C. difficile had not yet been reported. In this study, we tested spo0A mutants in three different C. difficile strains, R20291, UK1, and JIR8094, to understand the role of Spo0A in sin locus expression. Western blot analysis revealed that spo0A mutants had increased SinR levels. Quantitative reverse transcription-PCR (qRT-PCR) analysis of its expression further supported these data. By carrying out genetic and biochemical assays, we show that Spo0A can bind to the upstream region of this locus to regulates its expression. This study provides vital information that Spo0A regulates the sin locus, which controls critical pathogenic traits such as sporulation, toxin production, and motility in C. difficile. IMPORTANCE Clostridioides difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. During infection, C. difficile spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. In C. difficile, the sin locus is known to regulate both sporulation and toxin production. In this study, we show that Spo0A, the master regulator of sporulation, controls sin locus expression. Results from our study suggest that Spo0A directly regulates the expression of this locus by binding to its upstream DNA region. This observation adds new detail to the gene regulatory network that connects sporulation and toxin production in this pathogen.

2020 ◽  
Author(s):  
Babita Adhikari Dhungel ◽  
Revathi Govind

AbstractClostridioides difficile is the leading cause of nosocomial infection and is the causative agent of antibiotic-associated diarrhea. The severity of the disease is directly associated with the production of toxins, and spores are responsible for the transmission and persistence of the organism. Previously we characterized sin locus regulators SinR and SinR’, where SinR is the regulator of toxin production and sporulation, while the SinR’ acting as its antagonist. In Bacillus subtilis, Spo0A, the master regulator of sporulation, regulates SinR, by regulating the expression of its antagonist sinI. However, the role of Spo0A in the expression of sinR and sinR’ in C. difficile is not yet reported. In this study, we tested spo0A mutants in three different C. difficile strains R20291, UK1, and JIR8094, to understand the role of Spo0A in sin locus expression. Western blot analysis revealed that spo0A mutants had increased SinR levels. The qRT-PCR analysis for its expression further supported this data. By carrying out genetic and biochemical assays, we have shown that Spo0A can bind to the upstream region of this locus to regulates its expression. This study provides vital information that Spo0A regulates sin locus, which controls critical pathogenic traits such as sporulation, toxin production, and motility in C. difficile.IMPORTANCEClostridioides difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. During infection, C. difficile spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. In C. difficile, sin locus is known to regulate both sporulation and toxin production. In this study, we have shown that Spo0A, the master regulator of sporulation to control the sin locus expression. We performed various genetic and biochemical experiments to show that Spo0A directly regulates the expression of this locus by binding to its upstream DNA region. This observation adds new detail to the gene regulatory network that connects sporulation and toxin production in this pathogen.


2018 ◽  
Vol 200 (14) ◽  
Author(s):  
Brandon R. Anjuwon-Foster ◽  
Natalia Maldonado-Vazquez ◽  
Rita Tamayo

ABSTRACTClostridioides difficilecauses diarrheal diseases mediated in part by the secreted toxins TcdA and TcdB.C. difficileproduces flagella that also contribute to motility and bacterial adherence to intestinal cells during infection. Flagellum expression and toxin gene expression are linked via the flagellar alternative sigma factor, SigD. Recently, we identified a flagellar switch upstream of the early flagellar biosynthesis operon that mediates phase variation of both flagellum and toxin production inC. difficilestrain R20291. However, we were unable to detect flagellar switch inversion inC. difficilestrain 630, a ribotype 012 strain commonly used in research labs, suggesting that the strain is phase locked. To determine whether a phase-locked flagellar switch is limited to 630 or present more broadly in ribotype 012 strains, we assessed the frequency and phenotypic outcomes of flagellar switch inversion in multipleC. difficileribotype 012 isolates. The laboratory-adapted strain JIR8094, a derivative of strain 630, and six clinical and environmental isolates were all found to be phase-off, nonmotile, and attenuated for toxin production. We isolated low-frequency motile derivatives of JIR8094 with partial recovery of motility and toxin production and found that additional changes in JIR8094 impact these processes. The clinical and environmental isolates varied considerably in the frequency by which flagellar phase-on derivatives arose, and these derivatives showed fully restored motility and toxin production. Taken together, these results demonstrate heterogeneity in flagellar and toxin phase variation amongC. difficileribotype 012 strains and perhaps other ribotypes, which could impact disease progression and diagnosis.IMPORTANCEC. difficileproduces flagella that enhance bacterial motility and secretes toxins that promote diarrheal disease symptoms. Previously, we found that production of flagella and toxins is coregulated via a flippable DNA element termed the flagellar switch, which mediates the phase-variable production of these factors. Here, we evaluate multiple isolates ofC. difficileribotype 012 strains and find them to be primarily flagellar phase off (flg-off state). Some, but not all, of these isolates showed the ability to switch betweenflg-on and -off states. These findings suggest heterogeneity in the ability ofC. difficileribotype 012 strains to phase-vary flagellum and toxin production, which may broadly apply to pathogenicC. difficile.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bryan Angelo P. Roxas ◽  
Jennifer Lising Roxas ◽  
Rachel Claus-Walker ◽  
Anusha Harishankar ◽  
Asad Mansoor ◽  
...  

AbstractClostridioides difficile infection (CDI) is a major healthcare-associated diarrheal disease. Consistent with trends across the United States, C. difficile RT106 was the second-most prevalent molecular type in our surveillance in Arizona from 2015 to 2018. A representative RT106 strain displayed robust virulence and 100% lethality in the hamster model of acute CDI. We identified a unique 46 KB genomic island (GI1) in all RT106 strains sequenced to date, including those in public databases. GI1 was not found in its entirety in any other C. difficile clade, or indeed, in any other microbial genome; however, smaller segments were detected in Enterococcus faecium strains. Molecular clock analyses suggested that GI1 was horizontally acquired and sequentially assembled over time. GI1 encodes homologs of VanZ and a SrtB-anchored collagen-binding adhesin, and correspondingly, all tested RT106 strains had increased teicoplanin resistance, and a majority displayed collagen-dependent biofilm formation. Two additional genomic islands (GI2 and GI3) were also present in a subset of RT106 strains. All three islands are predicted to encode mobile genetic elements as well as virulence factors. Emergent phenotypes associated with these genetic islands may have contributed to the relatively rapid expansion of RT106 in US healthcare and community settings.


2017 ◽  
Vol 85 (6) ◽  
Author(s):  
Orhan Sahin ◽  
Samantha A. Terhorst ◽  
Eric R. Burrough ◽  
Zhangqi Shen ◽  
Zuowei Wu ◽  
...  

ABSTRACT Campylobacter jejuni is a zoonotic pathogen, and a hypervirulent clone, named clone SA, has recently emerged as the predominant cause of ovine abortion in the United States. To induce abortion, orally ingested Campylobacter must translocate across the intestinal epithelium, spread systemically in the circulation, and reach the fetoplacental tissue. Bacterial factors involved in these steps are not well understood. C. jejuni is known to produce capsular polysaccharide (CPS), but the specific role that CPS plays in systemic infection and particularly abortion in animals remains to be determined. In this study, we evaluated the role of CPS in bacteremia using a mouse model and in abortion using a pregnant guinea pig model following oral challenge. Compared with C. jejuni NCTC 11168 and 81-176, a clone SA isolate (IA3902) resulted in significantly higher bacterial counts and a significantly longer duration of bacteremia in mice. The loss of capsule production via gene-specific mutagenesis in IA3902 led to the complete abolishment of bacteremia in mice and abortion in pregnant guinea pigs, while complementation of capsule expression almost fully restored these phenotypes. The capsule mutant strain was also impaired for survival in guinea pig sera and sheep blood. Sequence-based analyses revealed that clone SA possesses a unique CPS locus with a mosaic structure, which has been stably maintained in all clone SA isolates derived from various hosts and times. These findings establish CPS as a key virulence factor for the induction of systemic infection and abortion in pregnant animals and provide a viable candidate for the development of vaccines against hypervirulent C. jejuni.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Robert W. McKee ◽  
Carissa K. Harvest ◽  
Rita Tamayo

ABSTRACTThe intracellular signaling molecule cyclic diguanylate (c-di-GMP) regulates many processes in bacteria, with a central role in controlling the switch between motile and nonmotile lifestyles. Recent work has shown that inClostridium difficile(also calledClostridioides difficile), c-di-GMP regulates swimming and surface motility, biofilm formation, toxin production, and intestinal colonization. In this study, we determined the transcriptional regulon of c-di-GMP inC. difficile,employing overexpression of a diguanylate cyclase gene to artificially manipulate intracellular c-di-GMP. Consistent with prior work, c-di-GMP regulated the expression of genes involved in swimming and surface motility. c-di-GMP also affected the expression of multiple genes encoding cell envelope proteins, several of which affected biofilm formationin vitro. A substantial proportion of the c-di-GMP regulon appears to be controlled either directly or indirectly via riboswitches. We confirmed the functionality of 11 c-di-GMP riboswitches, demonstrating their effects on downstream gene expression independent of the upstream promoters. The class I riboswitches uniformly functioned as “off” switches in response to c-di-GMP, while class II riboswitches acted as “on” switches. Transcriptional analyses of genes 3′ of c-di-GMP riboswitches over a broad range of c-di-GMP levels showed that relatively modest changes in c-di-GMP levels are capable of altering gene transcription, with concomitant effects on microbial behavior. This work expands the known c-di-GMP signaling network inC. difficileand emphasizes the role of the riboswitches in controlling known and putative virulence factors inC. difficile.IMPORTANCEInClostridium difficile, the signaling molecule c-di-GMP regulates multiple processes affecting its ability to cause disease, including swimming and surface motility, biofilm formation, toxin production, and intestinal colonization. In this study, we used RNA-seq to define the transcriptional regulon of c-di-GMP inC. difficile. Many new targets of c-di-GMP regulation were identified, including multiple putative colonization factors. Transcriptional analyses revealed a prominent role for riboswitches in c-di-GMP signaling. Only a subset of the 16 previously predicted c-di-GMP riboswitches were functionalin vivoand displayed potential variability in their response kinetics to c-di-GMP. This work underscores the importance of studying c-di-GMP riboswitches in a relevant biological context and highlights the role of the riboswitches in controlling gene expression inC. difficile.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Hannah D. Steinberg ◽  
Evan S. Snitkin

ABSTRACT Illness caused by the pathogen Clostridioides difficile is widespread and can range in severity from mild diarrhea to sepsis and death. Strains of C. difficile isolated from human infections exhibit great genetic diversity, leading to the hypothesis that the genetic background of the infecting strain at least partially determines a patient’s clinical course. However, although certain strains of C. difficile have been suggested to be associated with increased severity, strain typing alone has proved insufficient to explain infection severity. The limited explanatory power of strain typing has been hypothesized to be due to genetic variation within strain types, as well as genetic elements shared between strain types. Homologous recombination is an evolutionary mechanism that can result in large genetic differences between two otherwise clonal isolates, and also lead to convergent genotypes in distantly related strains. More than 400 C. difficile genomes were analyzed here to assess the effect of homologous recombination within and between C. difficile clades. Almost three-quarters of single nucleotide variants in the C. difficile phylogeny are predicted to be due to homologous recombination events. Furthermore, recombination events were enriched in genes previously reported to be important to virulence and host-pathogen interactions, such as flagella, cell wall proteins, and sugar transport and metabolism. Thus, by exploring the landscape of homologous recombination in C. difficile, we identified genetic loci whose elevated rates of recombination mediated diversification, making them strong candidates for being mediators of host-pathogen interaction in diverse strains of C. difficile. IMPORTANCE Infections with C. difficile result in up to half a million illnesses and tens of thousands of deaths annually in the United States. The severity of C. difficile illness is dependent on both host and bacterial factors. Studying the evolutionary history of C. difficile pathogens is important for understanding the variation in pathogenicity of these bacteria. This study examines the extent and targets of homologous recombination, a mechanism by which distant strains of bacteria can share genetic material, in hundreds of C. difficile strains and identifies hot spots of realized recombination events. The results of this analysis reveal the importance of homologous recombination in the diversification of genetic loci in C. difficile that are significant in its pathogenicity and host interactions, such as flagellar construction, cell wall proteins, and sugar transport and metabolism.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Elizabeth Anne Weigle ◽  
Laura McAndrews

PurposeThe purpose of this paper is to investigate Generation Z's physical expectations of being pregnant and their outlook for maternity wear shopping.Design/methodology/approachFemales in this cohort (n = 207) participated in an online survey that included questions about perceptions of pregnancy, physical self-concept and forecasted shopping behaviors.FindingsResults indicated that this group is concerned with physical changes of pregnancy and expect to treat each area of the body in a different way. Women's expected physical concerns of pregnancy predict how much they anticipate accentuating their pregnant body. Gen Z anticipates wearing loose maternity garments and they envision a thoughtful, in-store shopping experience for styles that are equally fashionable and comfortable, such as dresses.Research limitations/implicationsThis study should be extended to future generational cohorts like Generation Alpha, along with Gen Z outside of the United States and women in the United States who are non-white. Further studies should take a longitudinal approach to gauge changes in this cohort's expectations as they progress through pregnancy.Practical implicationsThis paper provides maternity wear retail brands and designers a foundation for product development and marketing geared toward this large cohort.Originality/valueThe study is the first to inquire about Gen Z's outlook on pregnancy, specifically their envisioned changes to each body area and the role of maternity garments to fulfill needs and concerns.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
JianQin Xiang ◽  
Feicheng Ma ◽  
Haiyan Wang

PurposeStudies have indicated that international innovation collaboration has promoted technology transfer and knowledge spillover between countries. The conclusion of various international intellectual property (IP) treaties has played an essential role in optimizing the international innovation and collaboration environment. This study investigates the effect of IP treaties on international innovation collaboration and whether international IP treaties can promote collaboration between a country and other economies in the world.Design/methodology/approachAfter collecting and extracting the patent record data from the United States Patent and Trademark Office (USPTO), a final dataset of 3,213,626 cooperative patents and 465,236 pairs of collaborations between two countries or regions is established. Based on the international patent collaboration data of 192 countries during 1976–2017, the changes in patent collaboration indicators after these countries joined 23 IP treaties are analyzed.FindingsInternational IP treaties have significantly increased the number of patent cooperation countries of a country and its importance in international cooperation networks. The role of IP treaties is more manifested by the increased opportunities for a country's international innovation cooperation than its influence on global innovation; this is of extreme significance for developing countries to introduce advanced technologies.Originality/valueGinarte and Park (1997) have confirmed that IP treaties have helped to raise the level of IP protection. In this study, the increase in the degree centrality of the international innovation network is evidence of IP treaties to promote innovation cooperation. For a developing country, joining an intellectual property treaty may strengthen intellectual property protection and optimize its own international innovation cooperation methods.


2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Hector Benito de la Puebla ◽  
David Giacalone ◽  
Alexei Cooper ◽  
Aimee Shen

ABSTRACT The nosocomial pathogen Clostridioides difficile is a spore-forming obligate anaerobe that depends on its aerotolerant spore form to transmit infections. Functional spore formation depends on the assembly of a proteinaceous layer known as the coat around the developing spore. In C. difficile, coat assembly depends on the conserved spore protein SpoIVA and the clostridial-organism-specific spore protein SipL, which directly interact. Mutations that disrupt their interaction cause the coat to mislocalize and impair spore formation. In Bacillus subtilis, SpoIVA is an ATPase that uses ATP hydrolysis to drive its polymerization around the forespore. Loss of SpoIVA ATPase activity impairs B. subtilis SpoIVA encasement of the forespore and activates a quality control mechanism that eliminates these defective cells. Since this mechanism is lacking in C. difficile, we tested whether mutations in the C. difficile SpoIVA ATPase motifs impact functional spore formation. Disrupting C. difficile SpoIVA ATPase motifs resulted in phenotypes that were typically >104-fold less severe than the equivalent mutations in B. subtilis. Interestingly, mutation of ATPase motif residues predicted to abrogate SpoIVA binding to ATP decreased the SpoIVA-SipL interaction, whereas mutation of ATPase motif residues predicted to disrupt ATP hydrolysis but maintain ATP binding enhanced the SpoIVA-SipL interaction. When a sipL mutation known to reduce binding to SpoIVA was combined with a spoIVA mutation predicted to prevent SpoIVA binding to ATP, spore formation was severely exacerbated. Since this phenotype is allele specific, our data imply that SipL recognizes the ATP-bound form of SpoIVA and highlight the importance of this interaction for functional C. difficile spore formation. IMPORTANCE The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis. Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Adrianne N. Edwards ◽  
Brandon R. Anjuwon-Foster ◽  
Shonna M. McBride

ABSTRACTClostridioides difficileinfection (CDI) is a toxin-mediated diarrheal disease. Several factors have been identified that influence the production of the two majorC. difficiletoxins, TcdA and TcdB, but prior published evidence suggested that additional unknown factors were involved in toxin regulation. Previously, we identified aC. difficileregulator, RstA, that promotes sporulation and represses motility and toxin production. We observed that the predicted DNA-binding domain of RstA was required for RstA-dependent repression of toxin genes, motility genes, andrstAtranscription. In this study, we further investigated the regulation of toxin and motility gene expression by RstA. DNA pulldown assays confirmed that RstA directly binds therstApromoter via the predicted DNA-binding domain. Through mutational analysis of therstApromoter, we identified several nucleotides that are important for RstA-dependent transcriptional regulation. Further, we observed that RstA directly binds and regulates the promoters of the toxin genestcdAandtcdB, as well as the promoters for thesigDandtcdRgenes, which encode regulators of toxin gene expression. Complementation analyses with theClostridium perfringensRstA ortholog and a multispecies chimeric RstA protein revealed that theC. difficileC-terminal domain is required for RstA DNA-binding activity, suggesting that species-specific signaling controls RstA function. Our data demonstrate that RstA is a transcriptional repressor that autoregulates its own expression and directly inhibits transcription of the two toxin genes and two positive toxin regulators, thereby acting at multiple regulatory points to control toxin production.IMPORTANCEClostridioides difficileis an anaerobic, gastrointestinal pathogen of humans and other mammals.C. difficileproduces two major toxins, TcdA and TcdB, which cause the symptoms of the disease, and forms dormant endospores to survive the aerobic environment outside the host. A recently discovered regulatory factor, RstA, inhibits toxin production and positively influences spore formation. Herein, we determine that RstA directly binds its own promoter DNA to repress its own gene transcription. In addition, our data demonstrate that RstA directly represses toxin gene expression and gene expression of two toxin gene activators, TcdR and SigD, creating a complex regulatory network to tightly control toxin production. This study provides a novel regulatory link betweenC. difficilesporulation and toxin production. Further, our data suggest thatC. difficiletoxin production is regulated through a direct, species-specific sensing mechanism.


Sign in / Sign up

Export Citation Format

Share Document