scholarly journals Adjustment of Trehalose Metabolism in Wine Saccharomyces cerevisiae Strains To Modify Ethanol Yields

2013 ◽  
Vol 79 (17) ◽  
pp. 5197-5207 ◽  
Author(s):  
D. Rossouw ◽  
E. H. Heyns ◽  
M. E. Setati ◽  
S. Bosch ◽  
F. F. Bauer

ABSTRACTThe ability ofSaccharomyces cerevisiaeto efficiently produce high levels of ethanol through glycolysis has been the focus of much scientific and industrial activity. Despite the accumulated knowledge regarding glycolysis, the modification of flux through this pathway to modify ethanol yields has proved difficult. Here, we report on the systematic screening of 66 strains with deletion mutations of genes encoding enzymes involved in central carbohydrate metabolism for altered ethanol yields. Five of these strains showing the most prominent changes in carbon flux were selected for further investigation. The genes were representative of trehalose biosynthesis (TPS1, encoding trehalose-6-phosphate synthase), central glycolysis (TDH3, encoding glyceraldehyde-3-phosphate dehydrogenase), the oxidative pentose phosphate pathway (ZWF1, encoding glucose-6-phosphate dehydrogenase), and the tricarboxylic acid (TCA) cycle (ACO1andACO2, encoding aconitase isoforms 1 and 2). Two strains exhibited lower ethanol yields than the wild type (tps1Δ andtdh3Δ), while the remaining three showed higher ethanol yields. To validate these findings in an industrial yeast strain, theTPS1gene was selected as a good candidate for genetic modification to alter flux to ethanol during alcoholic fermentation in wine. Using low-strength promoters active at different stages of fermentation, the expression of theTPS1gene was slightly upregulated, resulting in a decrease in ethanol production and an increase in trehalose biosynthesis during fermentation. Thus, the mutant screening approach was successful in terms of identifying target genes for genetic modification in commercial yeast strains with the aim of producing lower-ethanol wines.

2019 ◽  
Vol 19 (3) ◽  
Author(s):  
Alexandra Bergman ◽  
Dóra Vitay ◽  
John Hellgren ◽  
Yun Chen ◽  
Jens Nielsen ◽  
...  

ABSTRACTMicrobial conversion of biomass to fatty acids (FA) and products derived thereof is an attractive alternative to the traditional oleochemical production route from animal and plant lipids. This study examined if NADPH-costly FA biosynthesis could be enhanced by overexpressing the transcription factor Stb5 in Saccharomyces cerevisiae. Stb5 activates expression of multiple genes encoding enzymes within the pentose phosphate pathway (PPP) and other NADPH-producing reactions. Overexpression of STB5 led to a decreased growth rate and an increased free fatty acid (FFA) production during growth on glucose. The improved FFA synthetic ability in the glucose phase was shown to be independent of flux through the oxidative PPP. RNAseq analysis revealed that STB5 overexpression had wide-ranging effects on the transcriptome in the batch phase, and appeared to cause a counterintuitive phenotype with reduced flux through the oxidative PPP. During glucose limitation, when an increased NADPH supply is likely less harmful, an overall induction of the proposed target genes of Stb5 (eg. GND1/2, TAL1, ALD6, YEF1) was observed. Taken together, the strategy of utilizing STB5 overexpression to increase NADPH supply for reductive biosynthesis is suggested to have potential in strains engineered to have strong ability to consume excess NADPH, alleviating a potential redox imbalance.


2015 ◽  
Vol 81 (23) ◽  
pp. 8108-8117 ◽  
Author(s):  
Brooks M. Henningsen ◽  
Shuen Hon ◽  
Sean F. Covalla ◽  
Carolina Sonu ◽  
D. Aaron Argyros ◽  
...  

ABSTRACTSaccharomyces cerevisiaehas recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering ofS. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase fromBifidobacterium adolescentisand with deletions of glycerol-3-phosphate dehydrogenase genesGPD1andGPD2) consumed 1.9 g liter−1acetate during fermentation of 114 g liter−1glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH fromEntamoeba histolyticaand with overexpression ofACS2andZWF1, we increased acetate consumption to 5.3 g liter−1and raised the ethanol yield to 7% above the wild-type level.


2014 ◽  
Vol 81 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Moeko Chujo ◽  
Shiori Yoshida ◽  
Anri Ota ◽  
Kousaku Murata ◽  
Shigeyuki Kawai

ABSTRACTSaccharomyces cerevisiaenormally cannot assimilate mannitol, a promising brown macroalgal carbon source for bioethanol production. The molecular basis of this inability remains unknown. We found that cells capable of assimilating mannitol arose spontaneously from wild-typeS. cerevisiaeduring prolonged culture in mannitol-containing medium. Based on microarray data, complementation analysis, and cell growth data, we demonstrated that acquisition of mannitol-assimilating ability was due to spontaneous mutations in the genes encoding Tup1 or Cyc8, which constitute a general corepressor complex that regulates many kinds of genes. We also showed that anS. cerevisiaestrain carrying a mutant allele ofCYC8exhibited superior salt tolerance relative to other ethanologenic microorganisms; this characteristic would be highly beneficial for the production of bioethanol from marine biomass. Thus, we succeeded in conferring the ability to assimilate mannitol onS. cerevisiaethrough dysfunction of Tup1-Cyc8, facilitating production of ethanol from mannitol.


2018 ◽  
Vol 200 (24) ◽  
Author(s):  
Mona W. Orr ◽  
Cordelia A. Weiss ◽  
Geoffrey B. Severin ◽  
Husan Turdiev ◽  
Soo-Kyoung Kim ◽  
...  

ABSTRACT Bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that regulates processes, such as biofilm formation and virulence. During degradation, c-di-GMP is first linearized to 5′-phosphoguanylyl-(3′,5′)-guanosine (pGpG) and subsequently hydrolyzed to two GMPs by a previously unknown enzyme, which was recently identified in Pseudomonas aeruginosa as the 3′-to-5′ exoribonuclease oligoribonuclease (Orn). Mutants of orn accumulated pGpG, which inhibited the linearization of c-di-GMP. This product inhibition led to elevated c-di-GMP levels, resulting in increased aggregate and biofilm formation. Thus, the hydrolysis of pGpG is crucial to the maintenance of c-di-GMP homeostasis. How species that utilize c-di-GMP signaling but lack an orn ortholog hydrolyze pGpG remains unknown. Because Orn is an exoribonuclease, we asked whether pGpG hydrolysis can be carried out by genes that encode protein domains found in exoribonucleases. From a screen of these genes from Vibrio cholerae and Bacillus anthracis, we found that only enzymes known to cleave oligoribonucleotides (orn and nrnA) rescued the P. aeruginosa Δorn mutant phenotypes to the wild type. Thus, we tested additional RNases with demonstrated activity against short oligoribonucleotides. These experiments show that only exoribonucleases previously reported to degrade short RNAs (nrnA, nrnB, nrnC, and orn) can also hydrolyze pGpG. A B. subtilis nrnA nrnB mutant had elevated c-di-GMP, suggesting that these two genes serve as the primary enzymes to degrade pGpG. These results indicate that the requirement for pGpG hydrolysis to complete c-di-GMP signaling is conserved across species. The final steps of RNA turnover and c-di-GMP turnover appear to converge at a subset of RNases specific for short oligoribonucleotides. IMPORTANCE The bacterial bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) signaling molecule regulates complex processes, such as biofilm formation. c-di-GMP is degraded in two-steps, linearization into pGpG and subsequent cleavage to two GMPs. The 3′-to-5′ exonuclease oligoribonuclease (Orn) serves as the enzyme that degrades pGpG in Pseudomonas aeruginosa. Many phyla contain species that utilize c-di-GMP signaling but lack an Orn homolog, and the protein that functions to degrade pGpG remains uncharacterized. Here, systematic screening of genes encoding proteins containing domains found in exoribonucleases revealed a subset of genes encoded within the genomes of Bacillus anthracis and Vibrio cholerae that degrade pGpG to GMP and are functionally analogous to Orn. Feedback inhibition by pGpG is a conserved process, as strains lacking these genes accumulate c-di-GMP.


2017 ◽  
Vol 199 (21) ◽  
Author(s):  
Keugtae Kim ◽  
Yoko Chiba ◽  
Azusa Kobayashi ◽  
Hiroyuki Arai ◽  
Masaharu Ishii

ABSTRACT Hydrogenobacter thermophilus is an obligate chemolithoautotrophic bacterium of the phylum Aquificae and is capable of fixing carbon dioxide through the reductive tricarboxylic acid (TCA) cycle. The recent discovery of two novel-type phosphoserine phosphatases (PSPs) in H. thermophilus suggests the presence of a phosphorylated serine biosynthesis pathway; however, the physiological role of these novel-type metal-independent PSPs (iPSPs) in H. thermophilus has not been confirmed. In the present study, a mutant strain with a deletion of pspA, the catalytic subunit of iPSPs, was constructed and characterized. The generated mutant was a serine auxotroph, suggesting that the novel-type PSPs and phosphorylated serine synthesis pathway are essential for serine anabolism in H. thermophilus. As an autotrophic medium supplemented with glycine did not support the growth of the mutant, the reversible enzyme serine hydroxymethyltransferase does not appear to synthesize serine from glycine and may therefore generate glycine and 5,10-CH2-tetrahydrofolate (5,10-CH2-THF) from serine. This speculation is supported by the lack of glycine cleavage activity, which is needed to generate 5,10-CH2-THF, in H. thermophilus. Determining the mechanism of 5,10-CH2-THF synthesis is important for understanding the fundamental anabolic pathways of organisms, because 5,10-CH2-THF is a major one-carbon donor that is used for the synthesis of various essential compounds, including nucleic and amino acids. The findings from the present experiments using a pspA deletion mutant have confirmed the physiological role of iPSPs as serine producers and show that serine is a major donor of one-carbon units in H. thermophilus. IMPORTANCE Serine biosynthesis and catabolism pathways are intimately related to the metabolism of 5,10-CH2-THF, a one-carbon donor that is utilized for the biosynthesis of various essential compounds. For this reason, determining the mechanism of serine synthesis is important for understanding the fundamental anabolic pathways of microorganisms. In the present study, we experimentally confirmed that a novel phosphoserine phosphatase in the obligate chemolithoautotrophic bacterium Hydrogenobacter thermophilus is essential for serine biosynthesis. This finding indicates that serine is synthesized from an intermediate of gluconeogenesis in H. thermophilus. In addition, because glycine cleavage system activity and genes encoding an enzyme capable of producing 5,10-CH2-THF were not detected, serine appears to be the major one-carbon donor to tetrahydrofolate (THF) in H. thermophilus.


2011 ◽  
Vol 78 (4) ◽  
pp. 1081-1086 ◽  
Author(s):  
Guo-Chang Zhang ◽  
Jing-Jing Liu ◽  
Wen-Tao Ding

ABSTRACTThe recombinant xylose-fermentingSaccharomyces cerevisiaestrain harboring xylose reductase (XR) and xylitol dehydrogenase (XDH) fromScheffersomyces stipitisrequires NADPH and NAD+, creates cofactor imbalance, and causes xylitol accumulation during growth ond-xylose. To solve this problem,noxE, encoding a water-forming NADH oxidase fromLactococcus lactisdriven by thePGK1promoter, was introduced into the xylose-utilizing yeast strain KAM-3X. A cofactor microcycle was set up between the utilization of NAD+by XDH and the formation of NAD+by water-forming NADH oxidase. Overexpression ofnoxEsignificantly decreased xylitol formation and increased final ethanol production during xylose fermentation. Under xylose fermentation conditions with an initiald-xylose concentration of 50 g/liter, the xylitol yields for of KAM-3X(pPGK1-noxE) and control strain KAM-3X were 0.058 g/g xylose and 0.191 g/g, respectively, which showed a 69.63% decrease owing tonoxEoverexpression; the ethanol yields were 0.294 g/g for KAM-3X(pPGK1-noxE) and 0.211 g/g for the control strain KAM-3X, which indicated a 39.33% increase due tonoxEoverexpression. At the same time, the glycerol yield also was reduced by 53.85% on account of the decrease in the NADH pool caused by overexpression ofnoxE.


mBio ◽  
2012 ◽  
Vol 3 (2) ◽  
Author(s):  
Max Chavarría ◽  
Roelco J. Kleijn ◽  
Uwe Sauer ◽  
Katharina Pflüger-Grau ◽  
Víctor de Lorenzo

ABSTRACTTwo branches of the phosphoenolpyruvate-phosphotransferase system (PTS) operate in the soil bacteriumPseudomonas putidaKT2440. One branch encompasses a complete set of enzymes for fructose intake (PTSFru), while the other (N-related PTS, or PTSNtr) controls various cellular functions unrelated to the transport of carbohydrates. The potential of these two systems for regulating central carbon catabolism has been investigated by measuring the metabolic fluxes of isogenic strains bearing nonpolar mutations in PTSFruor PTSNtrgenes and grown on either fructose (a PTS substrate) or glucose, the transport of which is not governed by the PTS in this bacterium. The flow of carbon from each sugar was distinctly split between the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways in a ratio that was maintained in each of the PTS mutants examined. However, strains lacking PtsN (EIIANtr) displayed significantly higher fluxes in the reactions of the pyruvate shunt, which bypasses malate dehydrogenase in the TCA cycle. This was consistent with the increased activity of the malic enzyme and the pyruvate carboxylase found in the corresponding PTS mutants. Genetic evidence suggested that such a metabolic effect of PtsN required the transfer of high-energy phosphate through the system. The EIIANtrprotein of the PTSNtrthus helps adjust central metabolic fluxes to satisfy the anabolic and energetic demands of the overall cell physiology.IMPORTANCEThis study demonstrates that EIIANtrinfluences the biochemical reactions that deliver carbon between the upper and lower central metabolic domains for the consumption of sugars byP. putida. These findings indicate that the EIIANtrprotein is a key player for orchestrating the fate of carbon in various physiological destinations in this bacterium. Additionally, these results highlight the importance of the posttranslational regulation of extant enzymatic complexes for increasing the robustness of the corresponding metabolic networks.


2004 ◽  
Vol 3 (1) ◽  
pp. 221-231 ◽  
Author(s):  
Aneta Kaniak ◽  
Zhixiong Xue ◽  
Daniel Macool ◽  
Jeong-Ho Kim ◽  
Mark Johnston

ABSTRACT The yeast Saccharomyces cerevisiae senses glucose, its preferred carbon source, through multiple signal transduction pathways. In one pathway, glucose represses the expression of many genes through the Mig1 transcriptional repressor, which is regulated by the Snf1 protein kinase. In another pathway, glucose induces the expression of HXT genes encoding glucose transporters through two glucose sensors on the cell surface that generate an intracellular signal that affects function of the Rgt1 transcription factor. We profiled the yeast transcriptome to determine the range of genes targeted by this second pathway. Candidate target genes were verified by testing for Rgt1 binding to their promoters by chromatin immunoprecipitation and by measuring the regulation of the expression of promoter lacZ fusions. Relatively few genes could be validated as targets of this pathway, suggesting that this pathway is primarily dedicated to regulating the expression of HXT genes. Among the genes regulated by this glucose signaling pathway are several genes involved in the glucose induction and glucose repression pathways. The Snf3/Rgt2-Rgt1 glucose induction pathway contributes to glucose repression by inducing the transcription of MIG2, which encodes a repressor of glucose-repressed genes, and regulates itself by inducing the expression of STD1, which encodes a regulator of the Rgt1 transcription factor. The Snf1-Mig1 glucose repression pathway contributes to glucose induction by repressing the expression of SNF3 and MTH1, which encodes another regulator of Rgt1, and also regulates itself by repressing the transcription of MIG1. Thus, these two glucose signaling pathways are intertwined in a regulatory network that serves to integrate the different glucose signals operating in these two pathways.


2014 ◽  
Vol 13 (5) ◽  
pp. 591-613 ◽  
Author(s):  
Ursula Goodenough ◽  
Ian Blaby ◽  
David Casero ◽  
Sean D. Gallaher ◽  
Carrie Goodson ◽  
...  

ABSTRACT When the sta6 (starch-null) strain of the green microalga Chlamydomonas reinhardtii is nitrogen starved in acetate and then “boosted” after 2 days with additional acetate, the cells become “obese” after 8 days, with triacylglyceride (TAG)-filled lipid bodies filling their cytoplasm and chloroplasts. To assess the transcriptional correlates of this response, the sta6 strain and the starch-forming cw15 strain were subjected to RNA-Seq analysis during the 2 days prior and 2 days after the boost, and the data were compared with published reports using other strains and growth conditions. During the 2 h after the boost, ∼425 genes are upregulated ≥2-fold and ∼875 genes are downregulated ≥2-fold in each strain. Expression of a small subset of “sensitive” genes, encoding enzymes involved in the glyoxylate and Calvin-Benson cycles, gluconeogenesis, and the pentose phosphate pathway, is responsive to culture conditions and genetic background as well as to boosting. Four genes—encoding a diacylglycerol acyltransferase ( DGTT2 ), a glycerol-3-P dehydrogenase ( GPD3 ), and two candidate lipases (Cre03.g155250 and Cre17.g735600)—are selectively upregulated in the sta6 strain. Although the bulk rate of acetate depletion from the medium is not boost enhanced, three candidate acetate permease-encoding genes in the GPR1/FUN34/YaaH superfamily are boost upregulated, and 13 of the “sensitive” genes are strongly responsive to the cell's acetate status. A cohort of 64 autophagy-related genes is downregulated by the boost. Our results indicate that the boost serves both to avert an autophagy program and to prolong the operation of key pathways that shuttle carbon from acetate into storage lipid, the combined outcome being enhanced TAG accumulation, notably in the sta6 strain.


2012 ◽  
Vol 12 (2) ◽  
pp. 244-253 ◽  
Author(s):  
Helen A. Foster ◽  
Mingfei Cui ◽  
Angel Naveenathayalan ◽  
Heike Unden ◽  
Ralf Schwanbeck ◽  
...  

ABSTRACTSut1 is a transcriptional regulator of the Zn(II)2Cys6family in the budding yeastSaccharomyces cerevisiae. The only function that has been attributed to Sut1 is sterol uptake under anaerobic conditions. Here, we show that Sut1 is also expressed in the presence of oxygen, and we identify a novel function for Sut1.SUT1overexpression blocks filamentous growth, a response to nutrient limitation, in both haploid and diploid cells. This inhibition by Sut1 is independent of its function in sterol uptake. Sut1 downregulates the expression ofGAT2,HAP4,MGA1,MSN4,NCE102,PRR2,RHO3, andRHO5. Several of these Sut1 targets (GAT2,HAP4,MGA1,RHO3, andRHO5) are essential for filamentation in haploids and/or diploids. Furthermore, the expression of the Sut1 target genes, with the exception ofMGA1, is induced during filamentous growth. We also show thatSUT1expression is autoregulated and inhibited by Ste12, a key transcriptional regulator of filamentation. We propose that Sut1 partially represses the expression ofGAT2,HAP4,MGA1,MSN4,NCE102,PRR2,RHO3, andRHO5when nutrients are plentiful. Filamentation-inducing conditions relieve this repression by Sut1, and the increased expression of Sut1 targets triggers filamentous growth.


Sign in / Sign up

Export Citation Format

Share Document