Three distinct proteases are responsible for overall cell surface proteolysis in Streptococcus thermophilus .

Author(s):  
Mylène Boulay ◽  
Coralie Metton ◽  
Christine Mézange ◽  
Lydie Oliveira Correia ◽  
Thierry Meylheuc ◽  
...  

The lactic acid bacterium Streptococcus thermophilus was believed to display only two distinct proteases at the cell surface, namely the cell-envelope protease PrtS and the house-keeping protease HtrA. Using peptidomics, we demonstrate here the existence of an additional active cell-surface protease, which shares significant homology with the SepM protease of Streptococcus mutans . Although all three proteases—PrtS, HtrA, and SepM—are involved in the turnover of surface proteins, they demonstrate distinct substrate specificities. In particular, SepM cleaves proteins involved in cell wall metabolism and cell elongation, and its inactivation has consequences for cell morphology. When all three proteases are inactivated, the residual cell-surface proteolysis of S. thermophilus is approximately 5% of that of the wild-type strain. Importance Streptococcus thermophilus is a lactic acid bacterium widely used as a starter in the dairy industry. Due to its "generally recognized as safe" status and its weak cell-surface proteolytic activity, it is also considered to be a potential bacterial vector for heterologous protein production. Our identification of a new cell surface protease made it possible to construct a mutant strain with a 95% reduction in surface proteolysis, which could be useful in numerous biotechnological applications.

2021 ◽  
Vol 9 (11) ◽  
pp. 2380
Author(s):  
Ahoefa Ablavi Awussi ◽  
Emeline Roux ◽  
Catherine Humeau ◽  
Zeeshan Hafeez ◽  
Bernard Maigret ◽  
...  

Growth of the lactic acid bacterium Streptococcus thermophilus in milk depends on its capacity to hydrolyze proteins of this medium through its surface proteolytic activity. Thus, strains exhibiting the cell envelope proteinase (CEP) PrtS are able to grow in milk at high cellular density. Due to its LPNTG motif, which is possibly the substrate of the sortase A (SrtA), PrtS is anchored to the cell wall in most S. thermophilus strains. Conversely, a soluble extracellular PrtS activity has been reported in the strain 4F44. It corresponds, in fact, to a certain proportion of PrtS that is not anchored to the cell wall but rather is released in the growth medium. The main difference between PrtS of strain 4F44 (PrtS4F44) and other PrtS concerns the absence of a 32-residue imperfect duplication in the prodomain of the CEP, postulated as being required for the maturation and correct subsequent anchoring of PrtS. In fact, both mature (without the prodomain at the N-terminal extremity) and immature (with the prodomain) forms are found in the soluble PrtS4F44 form along with an intact LPNTG at their C-terminal extremity. Investigations we present in this work show that (i) the imperfect duplication is not implied in PrtS maturation; (ii) the maturase PrtM is irrelevant in PrtS maturation which is probably automaturated; and (iii) SrtA allows for the PrtS anchoring in S. thermophilus but the SrtA of strain 4F44 (SrtA4F44) displays an altered activity.


2017 ◽  
Vol 8 ◽  
Author(s):  
Brian McDonnell ◽  
Jennifer Mahony ◽  
Laurens Hanemaaijer ◽  
Horst Neve ◽  
Jean-Paul Noben ◽  
...  

2000 ◽  
Vol 66 (6) ◽  
pp. 2330-2335 ◽  
Author(s):  
Henrik Siegumfeldt ◽  
K. Björn Rechinger ◽  
Mogens Jakobsen

ABSTRACT We describe the dynamics of changes in the intracellular pH (pHi) values of a number of lactic acid bacteria in response to a rapid drop in the extracellular pH (pHex). Strains of Lactobacillus delbrueckii subsp.bulgaricus, Streptococcus thermophilus, andLactococcus lactis were investigated. Listeria innocua, a gram-positive, non-lactic acid bacterium, was included for comparison. The method which we used was based on fluorescence ratio imaging of single cells, and it was therefore possible to describe variations in pHi within a population. The bacteria were immobilized on a membrane filter, placed in a closed perfusion chamber, and analyzed during a rapid decrease in the pHex from 7.0 to 5.0. Under these conditions, the pHi of L. innocua remained neutral (between 7 and 8). In contrast, the pHi values of all of the strains of lactic acid bacteria investigated decreased to approximately 5.5 as the pHex was decreased. No pronounced differences were observed between cells of the same strain harvested from the exponential and stationary phases. Small differences between species were observed with regard to the initial pHi at pHex 7.0, while different kinetics of pHiregulation were observed in different species and also in different strains of S. thermophilus.


2004 ◽  
Vol 186 (9) ◽  
pp. 2594-2602 ◽  
Author(s):  
Miguel A. de Pedro ◽  
Christoph G. Grünfelder ◽  
Heinz Schwarz

ABSTRACT The polar regions of the Escherichia coli murein sacculus are metabolically inert and stable in time. Because the sacculus and the outer membrane are tightly associated, we investigated whether polar inert murein could restrict the mobility of other cell envelope elements. Cells were covalently labeled with a fluorescent reagent, chased in dye-free medium, and observed by microscopy. Fluorescent material was more efficiently retained at the cell poles than at any other location. The boundary between high and low fluorescence intensity areas was rather sharp. Labeled material consisted mostly of cell envelope proteins, among them the free and murein-bound forms of Braun's lipoprotein. Our results indicate that the mobility of at least some cell envelope proteins is restrained at regions in correspondence with underlying areas of inert murein.


Microbiology ◽  
2010 ◽  
Vol 156 (7) ◽  
pp. 2180-2193 ◽  
Author(s):  
Devon O. Osbourne ◽  
Wilson Aruni ◽  
Francis Roy ◽  
Christopher Perry ◽  
Lawrence Sandberg ◽  
...  

The Porphyromonas gingivalis vimA gene has been previously shown to play a significant role in the biogenesis of gingipains. Further, in P. gingivalis FLL92, a vimA-defective mutant, there was increased auto-aggregation, suggesting alteration in membrane surface proteins. In order to determine the role of the VimA protein in cell surface biogenesis, the surface morphology of P. gingivalis FLL92 was further characterized. Transmission electron microscopy demonstrated abundant fimbrial appendages and a less well defined and irregular capsule in FLL92 compared with the wild-type. In addition, atomic force microscopy showed that the wild-type had a smoother surface compared with FLL92. Western blot analysis using anti-FimA antibodies showed a 41 kDa immunoreactive protein band in P. gingivalis FLL92 which was missing in the wild-type P. gingivalis W83 strain. There was increased sensitivity to globomycin and vancomycin in FLL92 compared with the wild-type. Outer membrane fractions from FLL92 had a modified lectin-binding profile. Furthermore, in contrast with the wild-type strain, nine proteins were missing from the outer membrane fraction of FLL92, while 20 proteins present in that fraction from FLL92 were missing in the wild-type strain. Taken together, these results suggest that the VimA protein affects capsular synthesis and fimbrial phenotypic expression, and plays a role in the glycosylation and anchorage of several surface proteins.


2000 ◽  
Vol 66 (11) ◽  
pp. 4772-4778 ◽  
Author(s):  
María Dolores Fernandez-Espla ◽  
Peggy Garault ◽  
Véronique Monnet ◽  
Françoise Rul

ABSTRACT Streptococcus thermophilus CNRZ 385 expresses a cell envelope proteinase (PrtS), which is characterized in the present work, both at the biochemical and genetic levels. Since PrtS is resistant to most classical methods of extraction from the cell envelopes, we developed a three-step process based on loosening of the cell wall by cultivation of the cells in the presence of glycine (20 mM), mechanical disruption (with alumina powder), and enzymatic treatment (lysozyme). The pure enzyme is a serine proteinase highly activated by Ca2+ ions. Its activity was optimal at 37°C and pH 7.5 with acetyl-Ala-Ala-Pro-Phe-paranitroanilide as substrate. The study of the hydrolysis of the chromogenic and casein substrates indicated that PrtS presented an intermediate specificity between the most divergent types of cell envelope proteinases from lactococci, known as the PI and PIII types. This result was confirmed by the sequence determination of the regions involved in substrate specificity, which were a mix between those of PI and PIII types, and also had unique residues. Sequence analysis of the PrtS encoding gene revealed that PrtS is a member of the subtilase family. It is a multidomain protein which is maturated and tightly anchored to the cell wall via a mechanism involving an LPXTG motif. PrtS bears similarities to cell envelope proteinases from pyogenic streptococci (C5a peptidase and cell surface proteinase) and lactic acid bacteria (PrtP, PrtH, and PrtB). The highest homologies were found with streptococcal proteinases which lack, as PrtS, one domain (the B domain) present in cell envelope proteinases from all other lactic acid bacteria.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Wanjin Qiao ◽  
Yu Qiao ◽  
Fulu Liu ◽  
Yating Zhang ◽  
Ran Li ◽  
...  

Abstract Background In bioengineering, growth of microorganisms is limited because of environmental and industrial stresses during fermentation. This study aimed to construct a nisin-producing chassis Lactococcus lactis strain with genome-streamlined, low metabolic burden, and multi-stress tolerance characteristics. Results The Cre-loxP recombination system was applied to reduce the genome and obtain the target chassis strain. A prophage-related fragment (PRF; 19,739 bp) in the L. lactis N8 genome was deleted, and the mutant strain L. lactis N8-1 was chosen for multi-stress tolerance studies. Nisin immunity of L. lactis N8-1 was increased to 6500 IU/mL, which was 44.44% higher than that of the wild-type L. lactis N8 (4500 IU/mL). The survival rates of L. lactis N8-1 treated with lysozyme for 2 h and lactic acid for 1 h were 1000- and 10,000-fold higher than that of the wild-type strain, respectively. At 39 ℃, the L. lactis N8-1 could still maintain its growth, whereas the growth of the wild-type strain dramatically dropped. Scanning electron microscopy showed that the cell wall integrity of L. lactis N8-1 was well maintained after lysozyme treatment. Tandem mass tags labeled quantitative proteomics revealed that 33 and 9 proteins were significantly upregulated and downregulated, respectively, in L. lactis N8-1. These differential proteins were involved in carbohydrate and energy transport/metabolism, biosynthesis of cell wall and cell surface proteins. Conclusions PRF deletion was proven to be an efficient strategy to achieve multi-stress tolerance and nisin immunity in L. lactis, thereby providing a new perspective for industrially obtaining engineered strains with multi-stress tolerance and expanding the application of lactic acid bacteria in biotechnology and synthetic biology. Besides, the importance of PRF, which can confer vital phenotypes to bacteria, was established.


2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Michiel Wels ◽  
L. Mariela Serrano ◽  
Beerd-Jan Eibrink ◽  
Lennart Backus ◽  
Roger S. Bongers ◽  
...  

The lactic acid bacterium Streptococcus thermophilus is widely used for the fermentation of dairy products. Here, we present the draft genome sequence of S. thermophilus C106 isolated from an artisanal cheese produced in the countryside of Ireland.


2004 ◽  
Vol 70 (8) ◽  
pp. 4596-4603 ◽  
Author(s):  
Katy Vaillancourt ◽  
Jean-Dominique LeMay ◽  
Maryse Lamoureux ◽  
Michel Frenette ◽  
Sylvain Moineau ◽  
...  

ABSTRACT The lactic acid bacterium Streptococcus thermophilus is widely used by the dairy industry for its ability to transform lactose, the primary sugar found in milk, into lactic acid. Unlike the phylogenetically related species Streptococcus salivarius, S. thermophilus is unable to metabolize and grow on galactose and thus releases substantial amounts of this hexose into the external medium during growth on lactose. This metabolic property may result from the inability of S. thermophilus to synthesize galactokinase, an enzyme of the Leloir pathway that phosphorylates intracellular galactose to generate galactose-1-phosphate. In this work, we report the complementation of Gal− strain S. thermophilus SMQ-301 with S. salivarius galK, the gene that codes for galactokinase, and the characterization of recombinant strain SMQ-301K01. The recombinant strain, which was obtained by transformation of strain SMQ-301 with pTRKL2TK, a plasmid bearing S. salivarius galK, grew on galactose with a generation time of 55 min, which was almost double the generation time on lactose. Data confirmed that (i) the ability of SMQ-301K01 to grow on galactose resulted from the expression of S. salivarius galK and (ii) transcription of the plasmid-borne galK gene did not require GalR, a transcriptional regulator of the gal and lac operons, and did not interfere with the transcription of these operons. Unexpectedly, recombinant strain SMQ-301K01 still expelled galactose during growth on lactose, but only when the amount of the disaccharide in the medium exceeded 0.05%. Thus, unlike S. salivarius, the ability to metabolize galactose was not sufficient for S. thermophilus to simultaneously metabolize the glucose and galactose moieties of lactose. Nevertheless, during growth in milk and under time-temperature conditions that simulated those used to produce mozzarella cheese, the recombinant Gal+ strain grew and produced acid more rapidly than the Gal− wild-type strain.


Sign in / Sign up

Export Citation Format

Share Document