scholarly journals Role of vimA in cell surface biogenesis in Porphyromonas gingivalis

Microbiology ◽  
2010 ◽  
Vol 156 (7) ◽  
pp. 2180-2193 ◽  
Author(s):  
Devon O. Osbourne ◽  
Wilson Aruni ◽  
Francis Roy ◽  
Christopher Perry ◽  
Lawrence Sandberg ◽  
...  

The Porphyromonas gingivalis vimA gene has been previously shown to play a significant role in the biogenesis of gingipains. Further, in P. gingivalis FLL92, a vimA-defective mutant, there was increased auto-aggregation, suggesting alteration in membrane surface proteins. In order to determine the role of the VimA protein in cell surface biogenesis, the surface morphology of P. gingivalis FLL92 was further characterized. Transmission electron microscopy demonstrated abundant fimbrial appendages and a less well defined and irregular capsule in FLL92 compared with the wild-type. In addition, atomic force microscopy showed that the wild-type had a smoother surface compared with FLL92. Western blot analysis using anti-FimA antibodies showed a 41 kDa immunoreactive protein band in P. gingivalis FLL92 which was missing in the wild-type P. gingivalis W83 strain. There was increased sensitivity to globomycin and vancomycin in FLL92 compared with the wild-type. Outer membrane fractions from FLL92 had a modified lectin-binding profile. Furthermore, in contrast with the wild-type strain, nine proteins were missing from the outer membrane fraction of FLL92, while 20 proteins present in that fraction from FLL92 were missing in the wild-type strain. Taken together, these results suggest that the VimA protein affects capsular synthesis and fimbrial phenotypic expression, and plays a role in the glycosylation and anchorage of several surface proteins.

2004 ◽  
Vol 48 (8) ◽  
pp. 3203-3206 ◽  
Author(s):  
George A. Jacoby ◽  
Debra M. Mills ◽  
Nancy Chow

ABSTRACT High-level resistance to ertapenem was produced by β-lactamases of groups 1, 2f, and 3 in a strain of Klebsiella pneumoniae deficient in Omp35 and Omp36. From a wild-type strain producing ACT-1 β-lactamase, ertapenem-resistant mutants for which the ertapenem MICs were up to 128 μg/ml and expression of outer membrane proteins was diminished could be selected.


Microbiology ◽  
2009 ◽  
Vol 155 (1) ◽  
pp. 134-141 ◽  
Author(s):  
E. L. Denham ◽  
P. N. Ward ◽  
J. A. Leigh

The role of lipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (Lsp) responsible for processing lipoproteins was investigated in Streptococcus uberis, a common cause of bovine mastitis. In the absence of Lgt, three lipoproteins [MtuA (SUB0473), Hap (SUB1625) and an extracellular solute-binding protein (SUB0365)] were detected in extracellular locations. All were shown by Edman degradation analysis to be cleaved on the carboxy side of the LXXC lipobox. Detection of MtuA, a lipoprotein shown previously to be essential for infectivity and virulence, was used as a surrogate lipoprotein marker to locate and assess processing of lipoproteins. The absence of Lgt did not prevent location of MtuA to the cell membrane, its location in the wild-type strain but, in contrast to the situation with wild-type, did result in a widespread location of this protein. In the absence of both Lgt and Lsp, MtuA was similarly released from the bacterial cell. In such strains, however, the cell-associated MtuA represented the full-length gene product, indicating that Lsp was able to cleave non-lipidated (lipo)proteins but was not responsible for their release from this bacterium.


2006 ◽  
Vol 52 (7) ◽  
pp. 609-616 ◽  
Author(s):  
Luciano Sobrevals ◽  
Peter Müller ◽  
Adriana Fabra ◽  
Stella Castro

Glutathione (GSH) plays an important role in the defence of microorganisms and plants against different environmental stresses. To determine the role of GSH under different stresses, such as acid pH, saline shock, and oxidative shock, a GSH-deficient mutant (Bradyrhizobium sp. 6144-S7Z) was obtained by disruption of the gshA gene, which encodes the enzyme γ-glutamylcysteine synthetase. Growth of the mutant strain was significantly reduced in liquid minimal saline medium, and the GSH content was very low, about 4% of the wild-type level. The defect, caused by disruption of the gshA gene in the growth of mutant strain, cannot be reversed by the addition of GSH (up to 100 µmol/L) to the liquid minimal saline medium, and the endogenous GSH level was approximately the same as that observed without the addition of GSH. In contrast, the wild-type strain increased the GSH content under these conditions. However, the growth of the mutant strain in a rich medium (yeast extract – mannitol) increased, suggesting that at least some but not all of the functions of GSH could be provided by peptides and (or) amino acids. The symbiotic properties of the mutant were similar to those found in the wild-type strain, indicating that the mutation does not affect the ability of the mutant to form effective nodules.Key words: glutathione, γ-glutamylcysteine synthetase, Bradyrhizobium sp., peanut.


2007 ◽  
Vol 75 (3) ◽  
pp. 1537-1539 ◽  
Author(s):  
Elizabeth M. Fozo ◽  
Kathy Scott-Anne ◽  
Hyun Koo ◽  
Robert G. Quivey

ABSTRACT An insertionally inactivated fabM strain of Streptococcus mutans does not produce unsaturated membrane fatty acids and is acid sensitive (E. M. Fozo and R. G. Quivey, Jr., J. Bacteriol. 186:4152-4158, 2004). In this study, the strain was shown to be poorly transmissible from host to host. Animals directly infected with the fabM strain exhibited fewer and less severe carious lesions than those observed in the wild-type strain.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1734 ◽  
Author(s):  
Rafael M. Ferreira ◽  
Leandro M. Moreira ◽  
Jesus A. Ferro ◽  
Marcia R.R. Soares ◽  
Marcelo L. Laia ◽  
...  

Citrus canker is a major disease affecting citrus production in Brazil. It’s mainly caused byXanthomonas citrisubsp.citristrain 306 pathotype A (Xac). We analysed the differential expression of proteins secreted by wild typeXacand an asymptomatic mutant forhrpB4(ΔhrpB4) grown in Nutrient Broth (NB) and a medium mimicking growth conditions in the plant (XAM1). This allowed the identification of 55 secreted proteins, of which 37 were secreted by both strains when cultured in XAM1. In this secreted protein repertoire, the following stand out: Virk, Polyphosphate-selective porin, Cellulase, Endoglucanase, Histone-like protein, Ribosomal proteins, five hypothetical proteins expressed only in the wild type strain, Lytic murein transglycosylase, Lipoprotein, Leucyl-tRNA synthetase, Co-chaperonin, Toluene tolerance, C-type cytochrome biogenesis membrane protein, Aminopeptidase and two hypothetical proteins expressed only in the ΔhrpB4mutant. Furthermore, Peptidoglycan-associated outer membrane protein, Regulator of pathogenicity factor, Outer membrane proteins, Endopolygalacturonase, Chorismate mutase, Peptidyl-prolyl cis-trans isomerase and seven hypothetical proteins were detected in both strains, suggesting that there was no relationship with the secretion mediated by the type III secretory system, which is not functional in the mutant strain. Also worth mentioning is the Elongation factor Tu (EF-Tu), expressed only the wild type strain, and Type IV pilus assembly protein, Flagellin (FliC) and Flagellar hook-associated protein, identified in the wild-type strain secretome when grown only in NB. Noteworthy, that FliC, EF-Tu are classically characterized as PAMPs (Pathogen-associated molecular patterns), responsible for a PAMP-triggered immunity response. Therefore, our results highlight proteins potentially involved with the virulence. Overall, we conclude that the use of secretome data is a valuable approach that may bring more knowledge of the biology of this important plant pathogen, which ultimately can lead to the establishment of new strategies to combat citrus canker.


2004 ◽  
Vol 53 (5) ◽  
pp. 375-379 ◽  
Author(s):  
Ramon de Jonge ◽  
Zarmina Durrani ◽  
Sjoerd G. Rijpkema ◽  
Ernst J. Kuipers ◽  
Arnoud H.M. van Vliet ◽  
...  

The human gastric pathogen Helicobacter pylori expresses several putative outer-membrane proteins (OMPs), but the role of individual OMPs in colonization of the stomach by H. pylori is still poorly understood. The role of four such OMPs (AlpA, AlpB, OipA and HopZ) in a guinea pig model of H. pylori infection has been investigated. Single alpA, alpB, hopZ and oipA isogenic mutants were constructed in the guinea pig-adapted, wild-type H. pylori strain GP15. Guinea pigs were inoculated intragastrically with the wild-type strain, single mutants or a mixture of the wild-type and a single mutant in a 1 : 1 ratio. Three weeks after infection, H. pylori could be isolated from stomach sections of all animals that were infected with the wild-type, the hopZ mutant or the oipA mutant, but from only five of nine (P = 0.18) and one of seven (P = 0.02) animals that were infected with the alpA or alpB mutants, respectively. The hopZ and oipA mutants colonized the majority of animals that were inoculated with the strain mixture, whereas alpA and alpB mutants could not be isolated from animals that were infected with the strain mixture (P < 0.01). Specific IgG antibody responses were observed in all animals that were infected with either the wild-type or a mutant, but IgG levels were lower in animals that were infected with either the alpA or the alpB mutants, compared to the wild-type strain (P < 0.05). In conclusion, absence of AlpA or AlpB is a serious disadvantage for colonization of the stomach by H. pylori.


2001 ◽  
Vol 69 (10) ◽  
pp. 6091-6101 ◽  
Author(s):  
Jun Okuda ◽  
Toshihiro Nakai ◽  
Park Se Chang ◽  
Takanori Oh ◽  
Takeshi Nishino ◽  
...  

ABSTRACT To examine the hypothesis that the ancestral role of thetoxR gene in the family Vibrionaceae is control of the expression of outer membrane protein (OMP)-encoding genes for adaptation to environmental change, we investigated the role of thetoxR gene in Vibrio anguillarum, an important fish pathogen. The toxR gene of V. angullarum (Va-toxR) was cloned from strain PT-87050 isolated from diseased ayu (Plecoglossus altivelis), and the sequence was analyzed. The toxR sequence was 63 to 51% identical to those reported for other species of the familyVibrionaceae. Distribution of the Va-toxR gene sequence in V. anguillarum strains of various serotypes was confirmed by using DNA probe and PCR methods. An isogenictoxR mutant of V. anguillarum PT-24, isolated from diseased ayu, was constructed by using an allelic exchange method. The wild-type strain and the toxR mutant did not differ in the ability to produce a protease(s) and a hemolysin(s) or in pathogenicity for ayu when examined by the intramuscular injection and immersion methods. A 35-kDa major OMP was not produced by the toxR mutant. However, a 46-kDa OMP was hardly detected in the wild-type strain but was produced as the major OMP by the toxR mutant. For the toxR mutant, the MICs of two β-lactam antibiotics were higher and the minimum bactericidal concentration of sodium dodecyl sulfate was lower than for the wild-type strain. Analysis of the N-terminal amino acid sequences of the 35- and 46-kDa OMPs indicated that these proteins are the porin-like OMPs and are related to the toxR-regulated major OMPs of the family Vibrionaceae. The results indicate that the toxR gene is not involved in virulence expression inV. anguillarum PT-24 and that toxRregulation of major OMPs is universal in the familyVibrionaceae. These results support the hypothesis that the ancestral role of the toxR gene is regulation of OMP gene expression and that only in some Vibrio species has ToxR been appropriated for the regulation of a virulence gene(s).


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nayeong Kim ◽  
Hyo Jeong Kim ◽  
Man Hwan Oh ◽  
Se Yeon Kim ◽  
Mi Hyun Kim ◽  
...  

Abstract Background Zinc uptake-regulator (Zur)-regulated lipoprotein A (ZrlA) plays a role in bacterial fitness and overcoming antimicrobial exposure in Acinetobacter baumannii. This study further characterized the zrlA gene and its encoded protein and investigated the roles of the zrlA gene in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles (OMVs) in A. baumannii ATCC 17978. Results In silico and polymerase chain reaction analyses showed that the zrlA gene was conserved among A. baumannii strains with 97–100% sequence homology. Recombinant ZrlA protein exhibited a specific enzymatic activity of D-alanine-D-alanine carboxypeptidase. Wild-type A. baumannii exhibited more morphological heterogeneity than a ΔzrlA mutant strain during stationary phase. The ΔzrlA mutant strain was more susceptible to gentamicin than the wild-type strain. Sizes and protein profiles of OMVs were similar between the wild-type and ΔzrlA mutant strains, but the ΔzrlA mutant strain produced 9.7 times more OMV particles than the wild-type strain. OMVs from the ΔzrlA mutant were more cytotoxic in cultured epithelial cells than OMVs from the wild-type strain. Conclusions The present study demonstrated that A. baumannii ZrlA contributes to bacterial morphogenesis and antimicrobial resistance, but its deletion increases OMV production and OMV-mediated host cell cytotoxicity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


Sign in / Sign up

Export Citation Format

Share Document