scholarly journals Engineering Lactococcus lactis as a multi-stress tolerant biosynthetic chassis by deleting the prophage-related fragment

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Wanjin Qiao ◽  
Yu Qiao ◽  
Fulu Liu ◽  
Yating Zhang ◽  
Ran Li ◽  
...  

Abstract Background In bioengineering, growth of microorganisms is limited because of environmental and industrial stresses during fermentation. This study aimed to construct a nisin-producing chassis Lactococcus lactis strain with genome-streamlined, low metabolic burden, and multi-stress tolerance characteristics. Results The Cre-loxP recombination system was applied to reduce the genome and obtain the target chassis strain. A prophage-related fragment (PRF; 19,739 bp) in the L. lactis N8 genome was deleted, and the mutant strain L. lactis N8-1 was chosen for multi-stress tolerance studies. Nisin immunity of L. lactis N8-1 was increased to 6500 IU/mL, which was 44.44% higher than that of the wild-type L. lactis N8 (4500 IU/mL). The survival rates of L. lactis N8-1 treated with lysozyme for 2 h and lactic acid for 1 h were 1000- and 10,000-fold higher than that of the wild-type strain, respectively. At 39 ℃, the L. lactis N8-1 could still maintain its growth, whereas the growth of the wild-type strain dramatically dropped. Scanning electron microscopy showed that the cell wall integrity of L. lactis N8-1 was well maintained after lysozyme treatment. Tandem mass tags labeled quantitative proteomics revealed that 33 and 9 proteins were significantly upregulated and downregulated, respectively, in L. lactis N8-1. These differential proteins were involved in carbohydrate and energy transport/metabolism, biosynthesis of cell wall and cell surface proteins. Conclusions PRF deletion was proven to be an efficient strategy to achieve multi-stress tolerance and nisin immunity in L. lactis, thereby providing a new perspective for industrially obtaining engineered strains with multi-stress tolerance and expanding the application of lactic acid bacteria in biotechnology and synthetic biology. Besides, the importance of PRF, which can confer vital phenotypes to bacteria, was established.

2001 ◽  
Vol 67 (11) ◽  
pp. 5171-5178 ◽  
Author(s):  
Jeroen A. Wouters ◽  
Hélène Frenkiel ◽  
Willem M. de Vos ◽  
Oscar P. Kuipers ◽  
Tjakko Abee

ABSTRACT Members of the group of 7-kDa cold-shock proteins (CSPs) are the proteins with the highest level of induction upon cold shock in the lactic acid bacterium Lactococcus lactis MG1363. By using double-crossover recombination, two L. lactis strains were generated in which genes encoding CSPs are disrupted: L. lactis NZ9000ΔAB lacks the tandemly orientatedcspA and cspB genes, and NZ9000ΔABE lackscspA, cspB, and cspE. Both strains showed no differences in growth at normal and at low temperatures compared to that of the wild-type strain, L. lactis NZ9000. Two-dimensional gel electrophoresis showed that upon disruption of thecspAB genes, the production of remaining CspE at low temperature increased, and upon disruption of cspA, cspB, and cspE, the production of CspD at normal growth temperatures increased. Northern blot analysis showed that control is most likely at the transcriptional level. Furthermore, it was established by a proteomics approach that some (non-7-kDa) cold-induced proteins (CIPs) are not cold induced in the csp-lacking strains, among others the histon-like protein HslA and the signal transduction protein LlrC. This supports earlier observations (J. A. Wouters, M. Mailhes, F. M. Rombouts, W. M. De Vos, O. P. Kuipers, and T. Abee, Appl. Environ. Microbiol. 66:3756–3763, 2000). that the CSPs of L. lactis might be directly involved in the production of some CIPs upon low-temperature exposure. Remarkably, the adaptive response to freezing by prior exposure to 10°C was significantly reduced in strain NZ9000ΔABE but not in strain NZ9000ΔAB compared to results with wild-type strain NZ9000, indicating a notable involvement of CspE in cryoprotection.


2019 ◽  
Vol 87 (8) ◽  
Author(s):  
Elodie Cuenot ◽  
Transito Garcia-Garcia ◽  
Thibaut Douche ◽  
Olivier Gorgette ◽  
Pascal Courtin ◽  
...  

ABSTRACTClostridium difficileis the leading cause of antibiotic-associated diarrhea in adults. During infection,C. difficilemust detect the host environment and induce an appropriate survival strategy. Signal transduction networks involving serine/threonine kinases (STKs) play key roles in adaptation, as they regulate numerous physiological processes. PrkC ofC. difficileis an STK with two PASTA domains. We showed that PrkC is membrane associated and is found at the septum. We observed that deletion ofprkCaffects cell morphology with an increase in mean size, cell length heterogeneity, and presence of abnormal septa. A ΔprkCmutant was able to sporulate and germinate but was less motile and formed more biofilm than the wild-type strain. Moreover, a ΔprkCmutant was more sensitive to antimicrobial compounds that target the cell envelope, such as the secondary bile salt deoxycholate, cephalosporins, cationic antimicrobial peptides, and lysozyme. This increased susceptibility was not associated with differences in peptidoglycan or polysaccharide II composition. However, the ΔprkCmutant had less peptidoglycan and released more polysaccharide II into the supernatant. A proteomic analysis showed that the majority ofC. difficileproteins associated with the cell wall were less abundant in the ΔprkCmutant than the wild-type strain. Finally, in a hamster model of infection, the ΔprkCmutant had a colonization delay that did not significantly affect overall virulence.


2020 ◽  
Vol 6 (2) ◽  
pp. 86
Author(s):  
Marina Zoppo ◽  
Fabrizio Fiorentini ◽  
Cosmeri Rizzato ◽  
Mariagrazia Di Luca ◽  
Antonella Lupetti ◽  
...  

The Candida parapsilosis genome encodes for five agglutinin-like sequence (Als) cell-wall glycoproteins involved in adhesion to biotic and abiotic surfaces. The work presented here is aimed at analyzing the role of the two still uncharacterized ALS genes in C. parapsilosis, CpALS4790 and CpALS0660, by the generation and characterization of CpALS4790 and CpALS066 single mutant strains. Phenotypic characterization showed that both mutant strains behaved as the parental wild type strain regarding growth rate in liquid/solid media supplemented with cell-wall perturbing agents, and in the ability to produce pseudohyphae. Interestingly, the ability of the CpALS0660 null mutant to adhere to human buccal epithelial cells (HBECs) was not altered when compared with the wild-type strain, whereas deletion of CpALS4790 led to a significant loss of the adhesion capability. RT-qPCR analysis performed on the mutant strains in co-incubation with HBECs did not highlight significant changes in the expression levels of others ALS genes. In vivo experiments in a murine model of vaginal candidiasis indicated a significant reduction in CFUs recovered from BALB/C mice infected with each mutant strain in comparison to those infected with the wild type strain, confirming the involvement of CpAls4790 and CpAls5600 proteins in C. parapsilosis vaginal candidiasis in mice.


2007 ◽  
Vol 75 (9) ◽  
pp. 4519-4527 ◽  
Author(s):  
Lindsey N. Shaw ◽  
Ing-Marie Jonsson ◽  
Vineet K. Singh ◽  
Andrej Tarkowski ◽  
George C. Stewart

ABSTRACT The success of Staphylococcus aureus as a pathogen can largely be attributed to the plethora of genetic regulators encoded within its genome that temporally regulate its arsenal of virulence determinants throughout its virulence lifestyle. Arguably the most important of these is the two-component, quorum-sensing system agr. Over the last decade, the controversial presence of a second quorum-sensing system (the TRAP system) has been proposed, and it has been mooted to function as the master regulator of virulence in S. aureus by modulating agr. Mutants defective in TRAP are reported to be devoid of agr expression, lacking in hemolytic activity, essentially deficient in the secretion of virulence determinants, and avirulent in infection models. A number of research groups have questioned the validity of the TRAP findings in recent years; however, a thorough and independent analysis of its role in S. aureus physiology and pathogenesis has not been forthcoming. Therefore, we have undertaken such an analysis of the TRAP locus of S. aureus. We found that a traP mutant was equally hemolytic as the wild-type strain. Furthermore, transcriptional profiling found no alterations in the traP mutant in expression levels of agr or in expression levels of multiple agr-regulated genes (hla, sspA, and spa). Analysis of secreted and surface proteins of the traP mutant revealed no deviation in comparison to the parent. Finally, analysis conducted using a murine model of S. aureus septic arthritis revealed that, in contrast to an agr mutant, the traP mutant was just as virulent as the wild-type strain.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yuqun Shan ◽  
Xingxiao Lu ◽  
Yingnan Han ◽  
Xinpeng Li ◽  
Xiao Wang ◽  
...  

Outer membrane proteins (OMPs) can induce an immune response. Omp18 (HP1125) ofH. pyloriis a powerful antigen that can induce significant interferon-γ(IFN-γ) levels. Previous studies have suggested that IFN-γplays an important role inH. pyloriclearance. However,H. pylorihas multiple mechanisms to avoid host immune surveillance for persistent colonization. We generated anomp18mutant (H. pylori26695 andH. pyloriSS1) strain to examine whether Omp18 interacts with IFN-γand is involved inH. pyloricolonization. qRT-PCR revealed that IFN-γinduced Omp18 expression. qRT-PCR and western blot analysis revealed reduced expressions of virulence factors CagA and NapA inH. pylori26695 with IFN-γtreatment, but they were induced in the Δomp18strain. In C57BL/6 mice infected withH. pyloriSS1 and the Δomp18strain, the Δomp18strain conferred defective colonization and activated a stronger inflammatory response. Signal transducer phosphorylation and transcription 1 (STAT1) activator was downregulated by the wild-type strain but not the Δomp18strain in IFN-γ-treated macrophages. Furthermore, Δomp18strain survival rates were poor in macrophages compared to the wild-type strain. We concluded thatH. pyloriOmp18 has an important function influencing IFN-γ-mediated immune response to participate in persistent colonization.


2011 ◽  
Vol 24 (1) ◽  
pp. 129-142 ◽  
Author(s):  
Aliki K. Tzima ◽  
Epaminondas J. Paplomatas ◽  
Payungsak Rauyaree ◽  
Manuel D. Ospina-Giraldo ◽  
Seogchan Kang

Verticillium dahliae is a soilborne fungus causing vascular wilt in a diverse array of plant species. Its virulence has been attributed, among other factors, to the activity of hydrolytic cell wall–degrading enzymes (CWDE). The sucrose nonfermenting 1 gene (VdSNF1), which regulates catabolic repression, was disrupted in V. dahliae tomato race 1. Expression of CWDE in the resulting mutants was not induced in inductive medium and in simulated xylem fluid medium. Growth of the mutants was significantly reduced when grown with pectin or galactose as a carbon source whereas, with glucose, sucrose, and xylose, they grew similarly to wild-type and ectopic transformants. The mutants were severely impaired in virulence on tomato and eggplant (final disease severity reduced by an average of 87%). Microscopic observation of the infection behavior of a green fluorescent protein (gfp)-labeled VdSNF1 mutant (70ΔSF-gfp1) showed that it was defective in initial colonization of roots. Cross sections of tomato stem at the cotyledonary level showed that 70ΔSF-gfp1 colonized xylem vessels considerably less than the wild-type strain. The wild-type strain heavily colonized xylem vessels and adjacent parenchyma cells. Quantification of fungal biomass in plant tissues further confirmed reduced colonization of roots, stems, and cotyledons by 70ΔSF-gfp1 relative to that by the wild-type strain.


Microbiology ◽  
2010 ◽  
Vol 156 (7) ◽  
pp. 2180-2193 ◽  
Author(s):  
Devon O. Osbourne ◽  
Wilson Aruni ◽  
Francis Roy ◽  
Christopher Perry ◽  
Lawrence Sandberg ◽  
...  

The Porphyromonas gingivalis vimA gene has been previously shown to play a significant role in the biogenesis of gingipains. Further, in P. gingivalis FLL92, a vimA-defective mutant, there was increased auto-aggregation, suggesting alteration in membrane surface proteins. In order to determine the role of the VimA protein in cell surface biogenesis, the surface morphology of P. gingivalis FLL92 was further characterized. Transmission electron microscopy demonstrated abundant fimbrial appendages and a less well defined and irregular capsule in FLL92 compared with the wild-type. In addition, atomic force microscopy showed that the wild-type had a smoother surface compared with FLL92. Western blot analysis using anti-FimA antibodies showed a 41 kDa immunoreactive protein band in P. gingivalis FLL92 which was missing in the wild-type P. gingivalis W83 strain. There was increased sensitivity to globomycin and vancomycin in FLL92 compared with the wild-type. Outer membrane fractions from FLL92 had a modified lectin-binding profile. Furthermore, in contrast with the wild-type strain, nine proteins were missing from the outer membrane fraction of FLL92, while 20 proteins present in that fraction from FLL92 were missing in the wild-type strain. Taken together, these results suggest that the VimA protein affects capsular synthesis and fimbrial phenotypic expression, and plays a role in the glycosylation and anchorage of several surface proteins.


2002 ◽  
Vol 46 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Ofelia Chacon ◽  
Zhengyu Feng ◽  
N. Beth Harris ◽  
Nancy E. Cáceres ◽  
L. Garry Adams ◽  
...  

ABSTRACT Mycobacterium smegmatis is a fast-growing nonpathogenic species particularly useful in studying basic cellular processes of relevance to pathogenic mycobacteria. This study focused on the d-alanine racemase gene (alrA), which is involved in the synthesis of d-alanine, a basic component of peptidoglycan that forms the backbone of the cell wall. M. smegmatis alrA null mutants were generated by homologous recombination using a kanamycin resistance marker for insertional inactivation. Mutants were selected on Middlebrook medium supplemented with 50 mM d-alanine and 20 μg of kanamycin per ml. These mutants were also able to grow in standard and minimal media without d-alanine, giving rise to colonies with a drier appearance and more-raised borders than the wild-type strain. The viability of the mutants and independence of d-alanine for growth indicate that inactivation of alrA does not impose an auxotrophic requirement for d-alanine, suggesting the existence of a new pathway of d-alanine biosynthesis in M. smegmatis. Biochemical analysis demonstrated the absence of any detectable d-alanine racemase activity in the mutant strains. In addition, the alrA mutants displayed hypersusceptibility to the antimycobacterial agent d-cycloserine. The MIC of d-cycloserine for the mutant strain was 2.56 μg/ml, 30-fold less than that for the wild-type strain. Furthermore, this hypersusceptibility was confirmed by the bactericidal action of d-cycloserine on broth cultures. The kinetic of killing for the mutant strain followed the same pattern as that for the wild-type strain, but at a 30-fold-lower drug concentration. This effect does not involve a change in the permeability of the cell wall by this drug and is consistent with the identification of d-alanine racemase as a target of d-cycloserine. This outcome is of importance for the design of novel antituberculosis drugs targeting peptidoglycan biosynthesis in mycobacteria.


1999 ◽  
Vol 65 (12) ◽  
pp. 5398-5402 ◽  
Author(s):  
Annie Rakotoarivony Iung ◽  
Joël Coulon ◽  
Ferenc Kiss ◽  
Jacques Ngondi Ekome ◽  
Judit Vallner ◽  
...  

ABSTRACT We studied phosphopeptidomannans (PPMs) of two Saccharomyces cerevisiae NCYC 625 strains (S. diastaticus): a wild type strain grown aerobically, anaerobically, and in the presence of antimycin and a [rho 0] mutant grown aerobically and anaerobically. The aerobic wild-type cultures were highly flocculent, but all others were weakly flocculent. Ligands implicated in flocculation of mutants or antimycin-treated cells were not aggregated as much by concanavalin A as were those of the wild type. The [rho 0] mutants and antimycin-treated cells differ from the wild type in PPM composition and invertase, acid phosphatase, and glucoamylase activities. PPMs extracted from different cells differ in the protein but not in the glycosidic moiety. The PPMs were less stable in mitochondrion-deficient cells than in wild-type cells grown aerobically, and this difference may be attributable to defective mitochondrial function during cell wall synthesis. The reduced flocculation of cells grown in the presence of antimycin, under anaerobiosis, or carrying a [rho 0] mutation may be the consequence of alterations of PPM structures which are the ligands of lectins, both involved in this cell-cell recognition phenomenon. These respiratory chain alterations also affect peripheral, biologically active glycoproteins such as extracellular enzymes and peripheral PPMs.


Sign in / Sign up

Export Citation Format

Share Document