The lytic siphophage vB_StyS-LmqsSP1 reduces Salmonella Typhimurium isolates on chicken skin

Author(s):  
Golshan Shakeri ◽  
Jens A. Hammerl ◽  
Abdollah Jamshidi ◽  
Kiarash Ghazvini ◽  
Manfred Rohde ◽  
...  

Phage-based biocontrol of bacteria is considered as a natural approach to combat food-borne pathogens. Salmonella spp. are notifiable and highly prevalent pathogens that cause foodborne diseases globally. In this study, six bacteriophages were isolated and further characterized that infect food-derived Salmonella isolates from different meat sources. The siphovirus VB_StyS-LmqsSP1, which was isolated from a cow´s nasal swab, was further subjected to in-depth characterization. Phage-host interaction investigations in liquid medium showed that vB_StyS-LmqsSP1 can suppress the growth of Salmonella spp. isolates at 37°C for ten hours and reduce the bacterial titer at 4°C significantly. A reduction of 1.4 to 3 log units was observed in investigations with two food-derived Salmonella isolates and one reference strain under cooling conditions using MOIs of 10 4 and 10 5 . Phage application on chicken skin resulted in a reduction of about 2 log units in the tested Salmonella isolates from the first three hours throughout a one-week experiment at cooling temperature and an MOI of 10 5 . The one-step growth curve analysis using vB_StyS-LmqsSP1 demonstrated a 60-min latent period and a burst size of 50-61 PFU/infected cell for all tested hosts. Furthermore, the genome of the phage was determined to be free from genes causing undesired effects. Based on the phenotypic and genotypic properties, LmqsSP1 was assigned as a promising candidate for biocontrol of Salmonella Typhimurium in food. Importance: Salmonella enterica is one of the major global causes of foodborne enteritis in humans. The use of chemical sanitizers for reducing bacterial pathogens in the food chain can result in the spread of bacterial resistance. Targeted and clean label intervention strategies can reduce Salmonella contamination in food. The significance of our research demonstrates the suitability of a bacteriophage (vB_StyS-LmqsSP1) for biocontrol of Salmonella enterica serovar Typhimurium on poultry due to its lytic efficacy under conditions prevailing in food production environments.

2019 ◽  
Vol 7 (4) ◽  
pp. 100 ◽  
Author(s):  
Kantiya Petsong ◽  
Soottawat Benjakul ◽  
Soraya Chaturongakul ◽  
Andrea Switt ◽  
Kitiya Vongkamjan

Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium are major foodborne pathogens of concern worldwide. Bacteriophage applications have gained more interest for biocontrol in foods. This study isolated 36 Salmonella phages from several animal farms in Thailand and tested them on 47 Salmonella strains from several sources, including farms, seafood processing plant and humans in Thailand and USA. Phages were classified into three major groups. The estimated phage genome size showed the range from 50 ± 2 to 200 ± 2 kb. An effective phage cocktail consisting of three phages was developed. Approximately 4 log CFU/mL of S. Enteritidis and S. Typhimurium could be reduced. These phages revealed a burst size of up to 97.7 on S. Enteritidis and 173.7 PFU/cell on S. Typhimurium. Our phage cocktail could decrease S. Enteritidis on chicken meat and sunflower sprouts by 0.66 log CFU/cm2 and 1.27 log CFU/g, respectively. S. Typhimurium on chicken meat and sunflower sprouts were decreased by 1.73 log CFU/cm2 and 1.17 log CFU/g, respectively. Overall, animal farms in Thailand provided high abundance and diversity of Salmonella phages with the lysis ability on Salmonella hosts from various environments and continents. A developed phage cocktail suggests a potential biocontrol against Salmonella in fresh foods.


2013 ◽  
Vol 57 (5) ◽  
pp. 2191-2198 ◽  
Author(s):  
Jianfang Li ◽  
Chao Lv ◽  
Weiyang Sun ◽  
Zhenyu Li ◽  
Xiaowei Han ◽  
...  

ABSTRACTBacterial virulence factors have been increasingly regarded as attractive targets for development of novel antibacterial agents. Virulence inhibitors are less likely to generate bacterial resistance, which makes them superior to traditional antibiotics that target bacterial viability.Salmonella entericaserovar Typhimurium, an important food-borne human pathogen, has type III secretion system (T3SS) as its major virulence factor. T3SS secretes effector proteins to facilitate invasion into host cells. In this study, we identified several analogs of cytosporone B (Csn-B) that strongly block the secretion ofSalmonellapathogenicity island 1 (SPI-1)-associated effector proteins, without affecting the secretion of flagellar protein FliCin vitro. Csn-B and two other derivatives exhibited a strong inhibitory effect on SPI-1-mediated invasion to HeLa cells, while no significant toxicity to bacteria was observed. Nucleoid proteins Hha and H-NS bind to the promoters of SPI-1 regulator geneshilD,hilC, andrtsAto repress their expression and consequently regulate the expression of SPI-1 apparatus and effector genes. We found that Csn-B upregulated the transcription ofhhaandhns, implying that Csn-B probably affected the secretion of effectors through the Hha–H-NS regulatory pathway. In summary, this study presented an effective SPI-1 inhibitor, Csn-B, which may have potential in drug development against antibiotic-resistantSalmonella.


2021 ◽  
Vol 11 ◽  
Author(s):  
Natthaporn Klubthawee ◽  
Ratchaneewan Aunpad

Foodborne illness caused by consumption of food contaminated with Salmonella is one of the most common causes of diarrheal disease and affects millions of people worldwide. The rising emergence and spread of antimicrobial resistance, especially in some serotypes of Salmonella, has raised a great awareness of public health issues worldwide. To ensure safety of the food processing chain, the development of new food preservatives must be expedited. Recently, thermal- and pH-stable antimicrobial peptides have received much attention for use in food production, and represent safe alternatives to chemical preservatives. A 12-mer cathelicidin-derived, α-helical cationic peptide, P7, displayed rapid killing activity, against strains of drug-resistant foodborne Salmonella enterica serovar Typhimurium and its monophasic variant (S. enterica serovar 4,5,12:i:-) and had minimal toxicity against mouse fibroblast cells. P7 tended to form helical structure in the membrane-mimic environments as evaluated by circular dichroism (CD) spectroscopy. The action mode of P7 at the membrane-level was affirmed by the results of flow cytometry, and confocal, scanning and transmission electron microscopy. P7 killed bacteria through binding to bacterial membranes, penetration and the subsequent accumulation in S. enterica serovar Typhimurium cytoplasm. This induced membrane depolarization, permeabilization, and sequential leakage of intracellular substances and cell death. Except for sensitivity to proteolytic digestive enzymes, P7 maintained its inhibitory activity against S. enterica serovar Typhimurium in the presence of different conditions [various salts, extreme pHs and heat (even at 100°C)]. Moreover, the peptide is unlikely to induce bacterial resistance in vitro. Taken together, this study demonstrated that the membrane-permeabilizing P7 peptide has much potential as a new antimicrobial agent for use in food processing and preservation.


2002 ◽  
Vol 184 (12) ◽  
pp. 3159-3166 ◽  
Author(s):  
David G. Kehres ◽  
Anuradha Janakiraman ◽  
James M. Slauch ◽  
Michael E. Maguire

ABSTRACT MntH, a bacterial homolog of the mammalian natural resistance-associated macrophage protein 1 (Nramp1), is a primary Mn2+ transporter of Salmonella enterica serovar Typhimurium and Escherichia coli. S. enterica serovar Typhimurium MntH expression is important for full virulence; however, strains carrying an mntH deletion are only partially attenuated and display no obvious signs of Mn2+ deficiency. We noted that promoter sequences for mntH and for the putative Fe2+ transporter sitABCD appeared to have the same regulatory element responsive to Mn2+ and so hypothesized that sitABCD could transport Mn2+ with high affinity. We have now characterized transport by SitABCD in S. enterica serovar Typhimurium using 54Mn2+ and 55Fe2+ and compared its properties to those of MntH. SitABCD mediates the influx of Mn2+ with an apparent affinity (Ka ) identical to that of MntH, 0.1 μM. It also transports Fe2+ but with a Ka 30 to 100 times lower, 3 to 10 μM. Inhibition of 54Mn2+ transport by Fe2+ and of 55Fe2+ transport by Mn2+ gave inhibition constants comparable to each cation's Ka for influx. Since micromolar concentrations of free Fe2+ are improbable in a biological system, we conclude that SitABCD functions physiologically as a Mn2+ transporter. The cation inhibition profiles of SitABCD and MntH are surprisingly similar for two structurally and energetically unrelated transporters, with a Cd2+ Ki of ≈1 μM and a Co2+ Ki of ≈20 μM and with Ni2+, Cu2+, and Fe3+ inhibiting both transporters only at concentrations of >0.1 mM. The one difference is that Zn2+ exhibits potent inhibition of SitABCD (Ki = 1 to 3 μM) but inhibits MntH weakly (Ki > 50 μM). We have previously shown that MntH transports Mn2+ most effectively under acidic conditions. In sharp contrast, SitABCD has almost no transport capacity at acid pHs and optimally transports Mn2+ at slightly alkaline pHs. Overall, coupled with evidence that each transporter is multiply but distinctly regulated at the transcriptional level, the distinct transport properties of MntH versus SitABCD suggest that each transporter may be specialized for Mn2+ uptake in different physiological environments.


2005 ◽  
Vol 49 (8) ◽  
pp. 3396-3403 ◽  
Author(s):  
Hidenori Matsui ◽  
Masahiro Eguchi ◽  
Katsufumi Ohsumi ◽  
Akio Nakamura ◽  
Yasunori Isshiki ◽  
...  

ABSTRACT The present study shows that a sub-MIC of the macrolide antibiotic azithromycin (AZM) diminishes the virulence function of Salmonella enterica serovar Typhimurium. We first constructed an AZM-resistant strain (MS248) by introducing ermBC, an erythromycin ribosome methylase gene, into serovar Typhimurium. The MIC of AZM for MS248 exceeded 100 μg/ml. Second, we managed to determine the efficacy with which a sub-MIC of AZM reduced the virulence of MS248 in vitro. On the one hand, AZM (10 μg/ml) in the culture medium was unable to inhibit the total protein synthesis, growth rate, or survival within macrophages of MS248. On the other hand, AZM (10 μg/ml) reduced MS248's swarming and swimming motilities in addition to its invasive activity in Henle-407 cells. Electron micrographs revealed no flagellar filaments on the surface of MS248 after overnight growth in L broth supplemented with AZM (10 μg/ml). However, immunoblotting analysis showed that flagellin (FliC) was fully synthesized within the bacterial cells in the presence of AZM (10 μg/ml). In contrast, the same concentration of AZM reduced the export of FliC to the culture medium. These results indicate that a sub-MIC of AZM was able to affect the formation of flagellar filaments, specifically by reducing the amount of flagellin exported from bacterial cells, but it was not involved in suppressing the synthesis of flagellin. Unfortunately, AZM treatment was ineffective against murine salmonellosis caused by MS248.


2005 ◽  
Vol 187 (7) ◽  
pp. 2448-2457 ◽  
Author(s):  
Kiyoshi Kawasaki ◽  
Robert K. Ernst ◽  
Samuel I. Miller

ABSTRACT Salmonella enterica serovar Typhimurium remodels the lipid A component of lipopolysaccharide, a major component of the outer membrane, to survive within animals. The activation of the sensor kinase PhoQ in host environments increases the synthesis of enzymes that deacylate, palmitoylate, hydroxylate, and attach aminoarabinose to lipid A, also known as endotoxin. These modifications promote bacterial resistance to antimicrobial peptides and reduce the host recognition of lipid A by Toll-like receptor 4. The Salmonella lipid A 3-O-deacylase, PagL, is an outer membrane protein whose expression is regulated by PhoQ. In S. enterica serovar Typhimurium strains that had the ability to add aminoarabinose to lipid A, 3-O-deacylated lipid A species were not detected, despite the PhoQ induction of PagL protein expression. In contrast, strains defective for the aminoarabinose modification of lipid A demonstrated in vivo PagL activity, indicating that this membrane modification inhibited PagL's enzymatic activity. Since not all lipid A molecules are modified with aminoarabinose upon PhoQ activation, these results cannot be ascribed to the substrate specificity of PagL. PagL-dependent deacylation was detected in sonically disrupted membranes and membranes treated with the nonionic detergent n-octyl-β-d-glucopyranoside, suggesting that perturbation of the intact outer membrane releases PagL from posttranslational inhibition by aminoarabinose-containing membranes. Taken together, these results suggest that PagL enzymatic deacylation is posttranslationally inhibited by membrane environments, which either sequester PagL from its substrate or alter its conformation.


PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e43392 ◽  
Author(s):  
Hakdong Shin ◽  
Ju-Hoon Lee ◽  
Hyeryen Kim ◽  
Younho Choi ◽  
Sunggi Heu ◽  
...  

2009 ◽  
Vol 72 (9) ◽  
pp. 1812-1820 ◽  
Author(s):  
C. L. SHEFFIELD ◽  
T. L. CRIPPEN ◽  
K. ANDREWS ◽  
R. J. BONGAERTS ◽  
D. J. NISBET

Information implicating bacterial biofilms as contributory factors in the development of environmental bacterial resistance has been increasing. There is a lack of information regarding the role of biofilms within the microbial ecology of the gastrointestinal tract of food animals. This work used a continuous-flow chemostat model derived from the ceca of 7-day-old chicks to characterize these communities and their ability to neutralize invasion by Salmonella enterica serovar Typhimurium. We characterized and compared the biofilm and planktonic communities within these microcosms using automated ribotyping and the Analytical Profile Index biotyping system. Eleven species from eight different genera were identified from six culture systems. Klebsiella pneumoniae was isolated from all planktonic communities and four of the biofilm communities. Three of the communities resisted colonization by Salmonella enterica serovar Typhimurium, two communities suppressed growth, and one community succumbed to colonization. In cultures that resisted colonization, no Salmonella could be isolated from the biofilm; in cultures that succumbed to colonization, Salmonella was consistently found within the biofilms. This study was one of a series that provided a molecular-based characterization of both the biofilm and planktonic communities from continuous-flow culture systems derived from the cecal microflora of chicks, ranging in age from day-of-hatch to 14 days old. The one common factor relating to successful colonization of the culture was the presence of Salmonella within the biofilm. The capacity to sequester the introduced Salmonella into the biofilm appears to be a contributing factor to the inability of these cultures to withstand colonization by the Salmonella.


2003 ◽  
Vol 69 (5) ◽  
pp. 2959-2963 ◽  
Author(s):  
Min-Suk Rhee ◽  
Sun-Young Lee ◽  
Richard H. Dougherty ◽  
Dong-Hyun Kang

ABSTRACT This study was designed to investigate the individual and combined effects of mustard flour and acetic acid in the inactivation of food-borne pathogenic bacteria stored at 5 and 22°C. Samples were prepared to achieve various concentrations by the addition of acetic acid (0, 0.5, or 1%) along with mustard flour (0, 10, or 20%) and 2% sodium chloride (fixed amount). Acid-adapted three-strain mixtures of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium strains (106 to 107 CFU/ml) were inoculated separately into prepared mustard samples stored at 5 and 22°C, and samples were assayed periodically. The order of bacterial resistance, assessed by the time required for the nominated populations to be reduced to undetectable levels against prepared mustards at 5°C, was S. enterica serovar Typhimurium (1 day) < E. coli O157:H7 (3 days) < L. monocytogenes (9 days). The food-borne pathogens tested were reduced much more rapidly at 22°C than at 5°C. There was no synergistic effect with regard to the killing of the pathogens tested with the addition of 0.5% acetic acid to the mustard flour (10 or 20%). Mustard in combination with 0.5% acetic acid had less bactericidal activity against the pathogens tested than did mustard alone. The reduction of E. coli O157:H7 and L. monocytogenes among the combined treatments on the same storage day was generally differentiated as follows: control < mustard in combination with 0.5% acetic acid < mustard alone < mustard in combination with 1% acetic acid < acetic acid alone. Our study indicates that acidic products may limit microbial growth or survival and that the addition of small amounts of acetic acid (0.5%) to mustard can retard the reduction of E. coli O157:H7 and L. monocytogenes. These antagonistic effects may be changed if mustard is used alone or in combination with >1% acetic acid.


Sign in / Sign up

Export Citation Format

Share Document