scholarly journals Molecular Typing of CTX-M-Producing Escherichia coli Isolates from Environmental Water, Swine Feces, Specimens from Healthy Humans, and Human Patients

2013 ◽  
Vol 79 (19) ◽  
pp. 5988-5996 ◽  
Author(s):  
Yan-Yan Hu ◽  
Jia-Chang Cai ◽  
Hong-Wei Zhou ◽  
Dan Chi ◽  
Xiao-Fei Zhang ◽  
...  

ABSTRACTCTX-M-producingEscherichia coliis the predominant type of extended-spectrum β-lactamase (ESBL)-producingE. coliworldwide. In this study, molecular typing was conducted for 139 CTX-M-producingE. coliisolates, phenotypically positive for ESBLs, isolated from environmental water, swine, healthy humans, and hospitalized patients in Hangzhou, China. The antibiotic resistance profiles of the isolates for the cephalosporins and fluoroquinolones were determined. The isolates showed 100% resistance to cefotaxime and ceftriaxone while maintaining relatively high susceptibility to cefoxitin, cefepime, and ceftazidime. A total of 61.9% (86/139) of the isolates, regardless of origin, showed high resistance to fluoroquinolones. PCRs and DNA sequencing indicated thatblaCTX-M-14was the most prevalent CTX-M-9 group gene and thatblaCTX-M-15andblaCTX-M-55were the dominant CTX-M-1 group genes. Isolates from all sources with CTX-M types belonging to the CTX-M-1 or CTX-M-9 group were most frequently associated with epidemics. Molecular homology analysis of the isolates, conducted by phylogenetic grouping, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST), demonstrated that the dominant clones belonged to B2-ST131, D-ST648, D-ST38, or A-CC10. These four sequence types (STs) were discovered inE. coliisolates both from humans and from environmental water, suggesting frequent and continuous intercompartment transmission between humans and the aquatic environment. Seven novel sequence types were identified in the current study. In conclusion, this study is the first to report the molecular homology analysis of CTX-M-producingE. coliisolates collected from water, swine, and healthy and hospitalized humans, suggesting that pathogens in the environment might originate both from humans and from animals.

2012 ◽  
Vol 78 (13) ◽  
pp. 4677-4682 ◽  
Author(s):  
Charlotte Valat ◽  
Frédéric Auvray ◽  
Karine Forest ◽  
Véronique Métayer ◽  
Emilie Gay ◽  
...  

ABSTRACTIn line with recent reports of extended-spectrum beta-lactamases (ESBLs) inEscherichia coliisolates of highly virulent serotypes, such as O104:H4, we investigated the distribution of phylogroups (A, B1, B2, D) and virulence factor (VF)-encoding genes in 204 ESBL-producingE. coliisolates from diarrheic cattle. ESBL genes, VFs, and phylogroups were identified by PCR and a commercial DNA array (Alere, France). ESBL genes belonged mostly to the CTX-M-1 (65.7%) and CTX-M-9 (27.0%) groups, whereas those of the CTX-M-2 and TEM groups were much less represented (3.9% and 3.4%, respectively). One ESBL isolate wasstx1andeaepositive and belonged to a major enterohemorrhagicE. coli(EHEC) serotype (O111:H8). Two other isolates wereeaepositive butstxnegative; one of these had serotype O26:H11. ESBL isolates belonged mainly to phylogroup A (55.4%) and, to lesser extents, to phylogroups D (25.5%) and B1 (15.6%), whereas B2 strains were quasi-absent (1/204). The number of VFs was significantly higher in phylogroup B1 than in phylogroups A (P= 0.04) and D (P= 0.02). Almost all of the VFs detected were found in CTX-M-1 isolates, whereas only 64.3% and 33.3% of them were found in CTX-M-9 and CTX-M-2 isolates, respectively. These results indicated that the widespread dissemination of theblaCTX-Mgenes within theE. colipopulation from cattle still spared the subpopulation of EHEC/Shiga-toxigenicE. coli(STEC) isolates. In contrast to other reports on non-ESBL-producing isolates from domestic animals, B1 was not the main phylogroup identified. However, B1 was found to be the most virulent phylogroup, suggesting host-specific distribution of virulence determinants among phylogenetic groups.


2012 ◽  
Vol 78 (16) ◽  
pp. 5824-5830 ◽  
Author(s):  
Catherine M. Logue ◽  
Curt Doetkott ◽  
Paul Mangiamele ◽  
Yvonne M. Wannemuehler ◽  
Timothy J. Johnson ◽  
...  

ABSTRACTNeonatal meningitisEscherichia coli(NMEC) is one of the top causes of neonatal meningitis worldwide. Here, 85 NMEC and 204 fecalE. coliisolates from healthy humans (HFEC) were compared for possession of traits related to virulence, antimicrobial resistance, and plasmid content. This comparison was done to identify traits that typify NMEC and distinguish it from commensal strains to refine the definition of the NMEC subpathotype, identify traits that might contribute to NMEC pathogenesis, and facilitate choices of NMEC strains for future study. A large number ofE. colistrains from both groups were untypeable, with the most common serogroups occurring among NMEC being O18, followed by O83, O7, O12, and O1. NMEC strains were more likely than HFEC strains to be assigned to the B2 phylogenetic group. Few NMEC or HFEC strains were resistant to antimicrobials. Genes that best discriminated between NMEC and HFEC strains and that were present in more than 50% of NMEC isolates were mainly from extraintestinal pathogenicE. coligenomic and plasmid pathogenicity islands. Several of these defining traits had not previously been associated with NMEC pathogenesis, are of unknown function, and are plasmid located. Several genes that had been previously associated with NMEC virulence did not dominate among the NMEC isolates. These data suggest that there is much about NMEC virulence that is unknown and that there are pitfalls to studying single NMEC isolates to represent the entire subpathotype.


2019 ◽  
Vol 32 (3) ◽  
Author(s):  
Amee R. Manges ◽  
Hyun Min Geum ◽  
Alice Guo ◽  
Thaddeus J. Edens ◽  
Chad D. Fibke ◽  
...  

SUMMARY Extraintestinal pathogenic Escherichia coli (ExPEC) strains are responsible for a majority of human extraintestinal infections globally, resulting in enormous direct medical and social costs. ExPEC strains are comprised of many lineages, but only a subset is responsible for the vast majority of infections. Few systematic surveillance systems exist for ExPEC. To address this gap, we systematically reviewed and meta-analyzed 217 studies (1995 to 2018) that performed multilocus sequence typing or whole-genome sequencing to genotype E. coli recovered from extraintestinal infections or the gut. Twenty major ExPEC sequence types (STs) accounted for 85% of E. coli isolates from the included studies. ST131 was the most common ST from 2000 onwards, covering all geographic regions. Antimicrobial resistance-based isolate study inclusion criteria likely led to an overestimation and underestimation of some lineages. European and North American studies showed similar distributions of ExPEC STs, but Asian and African studies diverged. Epidemiology and population dynamics of ExPEC are complex; summary proportion for some STs varied over time (e.g., ST95), while other STs were constant (e.g., ST10). Persistence, adaptation, and predominance in the intestinal reservoir may drive ExPEC success. Systematic, unbiased tracking of predominant ExPEC lineages will direct research toward better treatment and prevention strategies for extraintestinal infections.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Lucas B. Harrison ◽  
Nancy D. Hanson

ABSTRACT Escherichia coli isolates belonging to the sequence type 131 (ST131) clonal complex have been associated with the global distribution of fluoroquinolone and β-lactam resistance. Whole-genome sequencing and multilocus sequence typing identify sequence type but are expensive when evaluating large numbers of samples. This study was designed to develop a cost-effective screening tool using high-resolution melting (HRM) analysis to differentiate ST131 from non-ST131 E. coli in large sample populations in the absence of sequence analysis. The method was optimized using DNA from 12 E. coli isolates. Singleplex PCR was performed using 10 ng of DNA, Type-it HRM buffer, and multilocus sequence typing primers and was followed by multiplex PCR. The amplicon sizes ranged from 630 to 737 bp. Melt temperature peaks were determined by performing HRM analysis at 0.1°C resolution from 50 to 95°C on a Rotor-Gene Q 5-plex HRM system. Derivative melt curves were compared between sequence types and analyzed by principal component analysis. A blinded study of 191 E. coli isolates of ST131 and unknown sequence types validated this methodology. This methodology returned 99.2% specificity (124 true negatives and 1 false positive) and 100% sensitivity (66 true positives and 0 false negatives). This HRM methodology distinguishes ST131 from non-ST131 E. coli without sequence analysis. The analysis can be accomplished in about 3 h in any laboratory with an HRM-capable instrument and principal component analysis software. Therefore, this assay is a fast and cost-effective alternative to sequencing-based ST131 identification.


2016 ◽  
Vol 60 (7) ◽  
pp. 4073-4081 ◽  
Author(s):  
Kalyan D. Chavda ◽  
Liang Chen ◽  
Michael R. Jacobs ◽  
Robert A. Bonomo ◽  
Barry N. Kreiswirth

ABSTRACTThe emergence and spread ofKlebsiella pneumoniaecarbapenemase (KPC) amongEnterobacteriaceaepresents a major public health threat to the world. Although not as common as inK. pneumoniae, KPC is also found inEscherichia colistrains. Here, we genetically characterized 9 carbapenem-resistantE. colistrains isolated from six hospitals in the United States and completely sequenced theirblaKPC-harboring plasmids. The nine strains were isolated from different geographical locations and belonged to 8 differentE. colisequence types. SevenblaKPC-harboring plasmids belonged to four different known incompatibility groups (IncN, -FIA, -FIIK2, and -FIIK1) and ranged in size from ∼16 kb to ∼241 kb. In this analysis, we also identified two plasmids that have novel replicons: (i) pBK28610, which is similar to p34978-3 with an insertion of Tn4401b, and (ii) pBK31611, which does not have an apparent homologue in the GenBank database. Moreover, we report the emergence of a pKP048-like plasmid, pBK34397, inE. coliin the United States. Meanwhile, we also found examples of interspecies spread ofblaKPCplasmids, as pBK34592 is identical to pBK30683, isolated fromK. pneumoniae. In addition, we discovered examples of acquisition (pBK32602 acquired an ∼46-kb fragment including a novel replication gene, along with Tn4401band other resistance genes) and/or loss (pKpQIL-Ec has a 14.5-kb deletion compared to pKpQIL-10 and pBK33689) of DNA, demonstrating the plasticity of these plasmids and their rapid evolution in the clinic. Overall, our study shows that the spread ofblaKPC-producingE. coliis largely due to horizontal transfer ofblaKPC-harboring plasmids and related mobile elements into diverse genetic backgrounds.


2015 ◽  
Vol 59 (6) ◽  
pp. 3574-3577 ◽  
Author(s):  
Shuhei Ueda ◽  
Bui Thi Kim Ngan ◽  
Bui Thi Mai Huong ◽  
Itaru Hirai ◽  
Le Danh Tuyen ◽  
...  

ABSTRACTWe examined whetherEscherichia coliisolates that produce CTX-M-9-type extended-spectrum β-lactamases (ESBL) are transferred between humans and chickens in a Vietnamese community. The phylogenetic group compositions, sequence types, antimicrobial resistance profiles, the prevalence of plasmid antibiotic resistance genes, and the plasmid replicon types generally differed between the human and chickenE. coliisolates. Our results suggest that transmission of theblaCTX-M-9-positiveE. colibetween humans and poultry was limited.


2015 ◽  
Vol 59 (6) ◽  
pp. 3424-3432 ◽  
Author(s):  
Jatan Bahadur Sherchan ◽  
Kayoko Hayakawa ◽  
Tohru Miyoshi-Akiyama ◽  
Norio Ohmagari ◽  
Teruo Kirikae ◽  
...  

ABSTRACTRecently, CTX-M-type extended-spectrum-β-lactamase (ESBL)-producingEscherichia colistrains have emerged worldwide. In particular,E. coliwith O antigen type 25 (O25) and sequence type 131 (ST131), which is often associated with the CTX-M-15 ESBL, has been increasingly reported globally; however, epidemiology reports on ESBL-producingE. coliin Asia are limited. Patients with clinical isolates of ESBL-producingE. coliin the Tribhuvan University teaching hospital in Kathmandu, Nepal, were included in this study. Whole-genome sequencing of the isolates was conducted to analyze multilocus sequence types, phylotypes, virulence genotypes, O25b-ST131 clones, and distribution of acquired drug resistance genes. During the study period, 105 patients with ESBL-producingE. coliisolation were identified, and the majority (90%) of these isolates were CTX-M-15 positive. The most dominant ST was ST131 (n= 54; 51.4%), followed by ST648 (n= 15; 14.3%). All ST131 isolates were identified as O25b-ST131 clones, subclone H30-Rx. Three ST groups (ST131, ST648, and non-ST131/648) were compared in further analyses. ST648 isolates had a proportionally higher resistance to non-β-lactam antibiotics and featured drug-resistant genes more frequently than ST131 or non-ST131/648 isolates. ST131 possessed the most virulence genes, followed by ST648. The clinical characteristics were similar among groups. More than 38% of ESBL-producingE. coliisolates were from the outpatient clinic, and pregnant patients comprised 24% of ESBL-producingE. colicases. We revealed that the high resistance of ESBL-producingE. colito multiple classes of antibiotics in Nepal is driven mainly by CTX-M-producing ST131 and ST648. Their immense prevalence in the communities is a matter of great concern.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-Shan Huang ◽  
Wan-Chen Tsai ◽  
Jia-Jie Li ◽  
Pao-Yu Chen ◽  
Jann-Tay Wang ◽  
...  

AbstractNew Delhi metallo-β-lactamase (NDM) had been reported to be the predominant carbapenemase among Escherichia coli in Taiwan. However, studies focusing on the clonal background and epidemiology of plasmids carrying NDM genes were limited. Between 2016 and 2018, all clinical E. coli and Klebsiella pneumoniae isolates that were non-susceptible to ertapenem, meropenem, and imipenem were tested for carbapenemase-encoding genes (CEGs) and antimicrobial susceptibilities. Molecular typing was performed on all carbapenemase-producing isolates. Whole genome sequencing (WGS) was performed on all NDM-positive E. coli isolates. Twenty-three (29.5%) of 78 carbapenem non-susceptible E. coli and 108 (35.3%) of 306 carbapenem non-susceptible K. pneumoniae isolates carried CEGs. The most prevalent CEGs in carbapenemase-producing E. coli (CPEc) were blaNDM (39.1%) and blaIMP-8 (30.4%), while that in carbapenemase-producing K. pneumoniae was Klebsiella pneumoniae carbapenemase (KPC) (72.2%). Fifteen sequence types were identified among 23 CPEc, and 55.6% of NDM-positive E. coli isolates belonged to ST410. WGS showed ST410 isolates were highly clonal and similar to those from other countries. All NDM-5-positive E. coli isolates carried identical IncX3 plasmid harboring blaNDM-5 but no other antimicrobial resistance (AMR) genes. In each of the four NDM-1-positive E. coli isolates, the blaNDM-1 was present in a ∼ 300 kb IncHI2/IncHI2A plasmid which carried an array of AMR genes. NDMs are the most prevalent carbapenemase among CPEc in Taiwan. Awareness should be raised as the prevalence of NDM-positive E. coli might increase rapidly with IncX3 plasmid and globally distributed strain ST410 being the potential vectors for wide dissemination.


2021 ◽  
Vol 7 (5) ◽  
Author(s):  
Frédéric Auvray ◽  
Alexandre Perrat ◽  
Yoko Arimizu ◽  
Camille V. Chagneau ◽  
Nadège Bossuet-Greif ◽  
...  

The pks island codes for the enzymes necessary for synthesis of the genotoxin colibactin, which contributes to the virulence of Escherichia coli strains and is suspected of promoting colorectal cancer. From a collection of 785 human and bovine E. coli isolates, we identified 109 strains carrying a highly conserved pks island, mostly from phylogroup B2, but also from phylogroups A, B1 and D. Different scenarios of pks acquisition were deduced from whole genome sequence and phylogenetic analysis. In the main scenario, pks was introduced and stabilized into certain sequence types (STs) of the B2 phylogroup, such as ST73 and ST95, at the asnW tRNA locus located in the vicinity of the yersiniabactin-encoding High Pathogenicity Island (HPI). In a few B2 strains, pks inserted at the asnU or asnV tRNA loci close to the HPI and occasionally was located next to the remnant of an integrative and conjugative element. In a last scenario specific to B1/A strains, pks was acquired, independently of the HPI, at a non-tRNA locus. All the pks-positive strains except 18 produced colibactin. Sixteen strains contained mutations in clbB or clbD, or a fusion of clbJ and clbK and were no longer genotoxic but most of them still produced low amounts of potentially active metabolites associated with the pks island. One strain was fully metabolically inactive without pks alteration, but colibactin production was restored by overexpressing the ClbR regulator. In conclusion, the pks island is not restricted to human pathogenic B2 strains and is more widely distributed in the E. coli population, while preserving its functionality.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Beiwen Zheng ◽  
Hao Xu ◽  
Chen Huang ◽  
Xiao Yu ◽  
Lihua Guo ◽  
...  

ABSTRACT The spread of colistin resistance gene mcr-1 at the animal-human interface remains largely unknown. This work aimed to investigate the molecular characteristics of two extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli strains with mcr-1, i.e., strains H8 and H9, isolated from the same mink farmer. In this study, five mcr-positive E. coli strains were isolated from the mink farm. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) identified two genetically unrelated MCR-1 producers (H8 and H9) from the same farmer and two clonally related MCR-1-positive isolates (M5 and M6) from two different mink samples. Additionally, a mcr-1 variant, designated mcr-1.12, was identified in isolate M4. MIC determination revealed that all of the MCR-producing strains exhibited multiresistant phenotypes but showed susceptibility to imipenem, meropenem, amikacin, and tigecycline. Replicon typing showed that mcr-1 was associated with IncHI2 plasmids in 4 cases, while the gene was located on an IncI2 plasmid in 1 case. PacBio sequencing and plasmid analysis confirmed that the mcr-1 gene was located on an ∼204-kb IncHI2 plasmid in H8 and was carried by an ∼61-kb IncI2 plasmid in H9. To our knowledge, this work represents the first report of the occurrence of MCR-producing isolates from mink. Moreover, our report also describes the coexistence of two different MCR-1 producers in the same farmer. It highlights that fur farms can be reservoirs of mcr-1 genes. The identification of mcr-carrying plasmids on a fur farm is of potential public health importance, as it suggests that mcr is widespread in the animal husbandry industry. IMPORTANCE Colistin resistance is a real threat for both human and animal health. The mobile colistin resistance gene mcr has contributed to the persistence and transmission of colistin resistance at the interfaces of animals, humans, and ecosystems. Although mcr genes have usually been recovered from food animals, patients, and healthy humans, transmission of mcr genes at the animal-human interface remains largely unknown. This was the first study to isolate and characterize MCR-producing isolates from mink, as well as to report the coexistence of two different MCR-1 producers in the same farmer. The characterization and analysis of two MCR-1-producing E. coli isolates may have important implications for comprehension of the transmission dynamics of these bacteria. We emphasize the importance of improved multisectorial surveillance of colistin-resistant E. coli in this region.


Sign in / Sign up

Export Citation Format

Share Document