scholarly journals Plasmids from Shiga Toxin-Producing Escherichia coli Strains with Rare Enterohemolysin Gene (ehxA) Subtypes Reveal Pathogenicity Potential and Display a Novel Evolutionary Path

2016 ◽  
Vol 82 (21) ◽  
pp. 6367-6377 ◽  
Author(s):  
Sandra C. Lorenz ◽  
Steven R. Monday ◽  
Maria Hoffmann ◽  
Markus Fischer ◽  
Julie A. Kase

ABSTRACTMost Shiga toxin-producingEscherichia coli(STEC) strains associated with severe disease, such as hemolytic-uremic syndrome (HUS), carry large enterohemolysin-encoding (ehxA) plasmids, e.g., pO157 and pO103, that contribute to STEC clinical manifestations. SixehxAsubtypes (A through F) exist that phylogenetically cluster intoeae-positive (B, C, F), a mix ofeae-positive (E) andeae-negative (A), and a third, more distantly related, cluster ofeae-negative (D) STEC strains. While subtype B, C, and F plasmids share a number of virulence traits that are distinct from those of subtype A, sequence data have not been available for subtype D and E plasmids. Here, we determined and compared the genetic composition of four subtype D and two subtype E plasmids to establish their evolutionary relatedness amongehxAsubtypes and define their potential role in pathogenicity. We found that subtype D strains carry one exceptionally large plasmid (>200 kbp) that carries a variety of virulence genes that are associated with enterotoxigenic and enterohemorrhagicE. coli, which, quite possibly, enables these strains to cause disease despite being food isolates. Our data offer further support for the hypothesis that this subtype D plasmid represents a novel virulence plasmid, sharing very few genetic features with other plasmids; we conclude that these plasmids have evolved from a different evolutionary lineage than the plasmids carrying the otherehxAsubtypes. In contrast, the 50-kbp plasmids of subtype E (pO145), although isolated from HUS outbreak strains, carried only few virulence-associated determinants, suggesting that the clinical presentation of subtype E strains is largely a result of chromosomally encoded virulence factors.IMPORTANCEBacterial plasmids are known to be key agents of change in microbial populations, promoting the dissemination of various traits, such as drug resistance and virulence. This study determined the genetic makeup of virulence plasmids from rare enterohemolysin subtype D and E Shiga toxin-producingE. colistrains. We demonstrated thatehxAsubtype D plasmids represent a novelE. colivirulence plasmid, and although subtype D plasmids were derived from nonclinical isolates, they encoded a variety of virulence determinants that are associated with pathogenicE. coli. In contrast, subtype E plasmids, isolated from strains recovered from severely ill patients, carry only a few virulence determinants. The results of this study reemphasize the plasticity and vast diversity amongE. coliplasmids. This work demonstrates that, althoughE. colistrains of certain serogroups may not be frequently associated with disease, they should not be underestimated in protecting human health and food safety.

2012 ◽  
Vol 78 (12) ◽  
pp. 4065-4073 ◽  
Author(s):  
Maite Muniesa ◽  
Jens A. Hammerl ◽  
Stefan Hertwig ◽  
Bernd Appel ◽  
Harald Brüssow

ABSTRACTIn 2011, Germany experienced the largest outbreak with a Shiga toxin-producingEscherichia coli(STEC) strain ever recorded. A series of environmental and trace-back and trace-forward investigations linked sprout consumption with the disease, but fecal-oral transmission was also documented. The genome sequences of the pathogen revealed a clonal outbreak with enteroaggregativeE. coli(EAEC). Some EAEC virulence factors are carried on the virulence plasmid pAA. From an unknown source, the epidemic strains acquired a lambdoid prophage carrying the gene for the Shiga toxin. The resulting strains therefore possess two different mobile elements, a phage and a plasmid, contributing essential virulence genes. Shiga toxin is released by decaying bacteria in the gut, migrates through the intestinal barrier, and is transported via the blood to target organs, like the kidney. In a mouse model, probiotic bifidobacteria interfered with transport of the toxin through the gut mucosa. Researchers explored bacteriophages, bacteriocins, and low-molecular-weight inhibitors against STEC. Randomized controlled clinical trials of enterohemorrhagicE. coli(EHEC)-associated hemolytic uremic syndrome (HUS) patients found none of the interventions superior to supportive therapy alone. Antibodies against one subtype of Shiga toxin protected pigs against fatal neurological infection, while treatment with a toxin receptor decoy showed no effect in a clinical trial. Likewise, a monoclonal antibody directed against a complement protein led to mixed results. Plasma exchange and IgG immunoadsoprtion ameliorated the condition in small uncontrolled trials. The epidemic O104:H4 strains were resistant to all penicillins and cephalosporins but susceptible to carbapenems, which were recommended for treatment.


2015 ◽  
Vol 82 (4) ◽  
pp. 1090-1101 ◽  
Author(s):  
Michelle Qiu Carter ◽  
Beatriz Quinones ◽  
Xiaohua He ◽  
Wayne Zhong ◽  
Jacqueline W. Louie ◽  
...  

ABSTRACTShiga toxin-producingEscherichia coli(STEC) serotype O145 is one of the major non-O157 serotypes associated with severe human disease. Here we examined the genetic diversity, population structure, virulence potential, and antimicrobial resistance profiles of environmental O145 strains recovered from a major produce production region in California. Multilocus sequence typing analyses revealed that sequence type 78 (ST-78), a common ST in clinical strains, was the predominant genotype among the environmental strains. Similarly, all California environmental strains belonged to H28, a common H serotype in clinical strains. Although most environmental strains carried an intactfliCgene, only one strain retained swimming motility. Diversestxsubtypes were identified, includingstx1a,stx2a,stx2c, andstx2e. Although no correlation was detected between thestxgenotype and Stx1 production, high Stx2 production was detected mainly in strains carryingstx2aonly and was correlated positively with the cytotoxicity of Shiga toxin. All environmental strains were capable of producing enterohemolysin, whereas only 10 strains were positive for anaerobic hemolytic activity. Multidrug resistance appeared to be common, as nearly half of the tested O145 strains displayed resistance to at least two different classes of antibiotics. The core virulence determinants of enterohemorrhagicE. coliwere conserved in the environmental STEC O145 strains; however, there was large variation in the expression of virulence traits among the strains that were highly related genotypically, implying a trend of clonal divergence. Several cattle isolates exhibited key virulence traits comparable to those of the STEC O145 outbreak strains, emphasizing the emergence of hypervirulent strains in agricultural environments.


2012 ◽  
Vol 78 (13) ◽  
pp. 4724-4731 ◽  
Author(s):  
Glen E. Mellor ◽  
Eby M. Sim ◽  
Robert S. Barlow ◽  
Beatriz A. D'Astek ◽  
Lucia Galli ◽  
...  

ABSTRACTShiga toxigenicEscherichia coliO157 is the leading cause of hemolytic uremic syndrome (HUS) worldwide. The frequencies ofstxgenotypes and the incidences of O157-related illness and HUS vary significantly between Argentina and Australia. Locus-specific polymorphism analysis revealed that lineage I/II (LI/II)E. coliO157 isolates were most prevalent in Argentina (90%) and Australia (88%). Argentinean LI/II isolates were shown to belong to clades 4 (28%) and 8 (72%), while Australian LI/II isolates were identified as clades 6 (15%), 7 (83%), and 8 (2%). Clade 8 was significantly associated with Shiga toxin bacteriophage insertion (SBI) typestx2(locus of insertion,argW) in Argentinean isolates (P< 0.0001). In Argentinean LI/II strains,stx2is carried by a prophage inserted atargW, whereas in Australian LI/II strains theargWlocus is occupied by the novelstx1prophage. In both Argentinean and Australian LI/II strains,stx2cis almost exclusively carried by a prophage inserted atsbcB. However, alternativeq933- orq21-related alleles were identified in the Australianstx2cprophage. Argentinean LI/II isolates were also distinguished from Australian isolates by the presence of the putative virulence determinant ECSP_3286 and the predominance of motile O157:H7 strains. Characteristics common to both Argentinean and Australian LI/II O157 strains included the presence of putative virulence determinants (ECSP_3620, ECSP_0242, ECSP_2687, ECSP_2870, and ECSP_2872) and the predominance of thetir255T allele. These data support further understanding of O157 phylogeny and may foster greater insight into the differential virulence of O157 lineages.


2012 ◽  
Vol 78 (13) ◽  
pp. 4677-4682 ◽  
Author(s):  
Charlotte Valat ◽  
Frédéric Auvray ◽  
Karine Forest ◽  
Véronique Métayer ◽  
Emilie Gay ◽  
...  

ABSTRACTIn line with recent reports of extended-spectrum beta-lactamases (ESBLs) inEscherichia coliisolates of highly virulent serotypes, such as O104:H4, we investigated the distribution of phylogroups (A, B1, B2, D) and virulence factor (VF)-encoding genes in 204 ESBL-producingE. coliisolates from diarrheic cattle. ESBL genes, VFs, and phylogroups were identified by PCR and a commercial DNA array (Alere, France). ESBL genes belonged mostly to the CTX-M-1 (65.7%) and CTX-M-9 (27.0%) groups, whereas those of the CTX-M-2 and TEM groups were much less represented (3.9% and 3.4%, respectively). One ESBL isolate wasstx1andeaepositive and belonged to a major enterohemorrhagicE. coli(EHEC) serotype (O111:H8). Two other isolates wereeaepositive butstxnegative; one of these had serotype O26:H11. ESBL isolates belonged mainly to phylogroup A (55.4%) and, to lesser extents, to phylogroups D (25.5%) and B1 (15.6%), whereas B2 strains were quasi-absent (1/204). The number of VFs was significantly higher in phylogroup B1 than in phylogroups A (P= 0.04) and D (P= 0.02). Almost all of the VFs detected were found in CTX-M-1 isolates, whereas only 64.3% and 33.3% of them were found in CTX-M-9 and CTX-M-2 isolates, respectively. These results indicated that the widespread dissemination of theblaCTX-Mgenes within theE. colipopulation from cattle still spared the subpopulation of EHEC/Shiga-toxigenicE. coli(STEC) isolates. In contrast to other reports on non-ESBL-producing isolates from domestic animals, B1 was not the main phylogroup identified. However, B1 was found to be the most virulent phylogroup, suggesting host-specific distribution of virulence determinants among phylogenetic groups.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Andreas Bauwens ◽  
Lisa Kunsmann ◽  
Helge Karch ◽  
Alexander Mellmann ◽  
Martina Bielaszewska

ABSTRACT Ciprofloxacin, meropenem, fosfomycin, and polymyxin B strongly increase production of outer membrane vesicles (OMVs) in Escherichia coli O104:H4 and O157:H7. Ciprofloxacin also upregulates OMV-associated Shiga toxin 2a, the major virulence factor of these pathogens, whereas the other antibiotics increase OMV production without the toxin. These two effects might worsen the clinical outcome of infections caused by Shiga toxin-producing E. coli. Our data support the existing recommendations to avoid antibiotics for treatment of these infections.


2019 ◽  
Vol 8 (32) ◽  
Author(s):  
Yen-Te Liao ◽  
Yujie Zhang ◽  
Alexandra Salvador ◽  
Vivian C. H. Wu

Escherichia phage vB_EcoM-Sa45lw, a new member of the T4-like phages, was isolated from surface water in a produce-growing area. The phage, containing double-stranded DNA with a genome size of 167,353 bp and 282 predicted open reading frames (ORFs), is able to infect generic Escherichia coli and Shiga toxin-producing E. coli O45 and O157 strains.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


2011 ◽  
Vol 77 (22) ◽  
pp. 8088-8096 ◽  
Author(s):  
Eelco Franz ◽  
Angela H. A. M. van Hoek ◽  
El Bouw ◽  
Henk J. M. Aarts

ABSTRACTThe variation in manure-amended soil survival capability among 18Escherichia coliO157 strains (8 animal, 1 food, and 9 human isolates) was studied using a single sandy soil sample and a single sample of cattle manure as the inoculum carrier. The virulence profiles ofE. coliO157 strains were characterized by detection of virulence determinants (73 genes, 122 probes in duplicate) by using the IdentibacE. coligenotyping DNA miniaturized microarray. Metabolic profiling was done by subjecting all strains to the Biolog phenotypic carbon microarray. Survival times (calculated as days needed to reach the detection limit using the Weibull model) ranged from 47 to 266 days (median, 120 days). Survival time was significantly higher for the group of human isolates (median, 211 days; minimum [min.], 71; maximum [max.], 266) compared to the group of animal isolates (median, 70 days; min., 47; max., 249) (P= 0.025). Although clustering of human versus animal strains was observed based on pulsed-field gel electrophoresis (PFGE) patterns, no relation between survival time and the presence of virulence genes was observed. Principal component analysis on the metabolic profiling data revealed distinct clustering of short- and long-surviving strains. The oxidization rate of propionic acid, α-ketobutyric acid, and α-hydroxybutyric acid was significantly higher for the long-surviving strains than for the short-surviving strains. The oxidative capacity ofE. coliO157 strains may be regarded as a phenotypic marker for enhanced survival in manure-amended soil. The large variation observed in survival is of importance for risk assessment models.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Laura Heinisch ◽  
Katharina Zoric ◽  
Maike Krause ◽  
Herbert Schmidt

ABSTRACT Certain foodborne Shiga toxin-producing Escherichia coli (STEC) strains carry genes encoding the subtilase cytotoxin (SubAB). Although the mode of action of SubAB is under intensive investigation, information about the regulation of subAB gene expression is currently not available. In this study, we investigated the regulation of the chromosomal subAB1 gene in laboratory E. coli strain DH5α and STEC O113:H21 strain TS18/08 using a luciferase reporter gene assay. Special emphasis was given to the role of the global regulatory protein genes hfq and hns in subAB1 promoter activity. Subsequently, quantitative real-time PCR was performed to analyze the expression of Shiga toxin 2a (Stx2a), SubAB1, and cytolethal distending toxin V (Cdt-V) genes in STEC strain TS18/08 and its isogenic hfq and hns deletion mutants. The deletion of hfq led to a significant increase of up to 2-fold in subAB1 expression, especially in the late growth phase, in both strains. However, deletion of hns showed different effects on the promoter activity during the early and late exponential growth phases in both strains. Furthermore, upregulation of stx2a and cdt-V was demonstrated in hfq and hns deletion mutants in TS18/08. These data showed that the expression of subAB1, stx2a, and cdt-V is integrated in the regulatory network of global regulators Hfq and H-NS in Escherichia coli. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) strains are responsible for outbreaks of foodborne diseases, such as hemorrhagic colitis and the hemolytic uremic syndrome. The pathogenicity of those strains can be attributed to, among other factors, the production of toxins. Recently, the subtilase cytotoxin was detected in locus of enterocyte effacement (LEE)-negative STEC, and it was confirmed that it contributes to the cytotoxicity of those STEC strains. Although the mode of action of SubAB1 is under intensive investigation, the regulation of gene expression is currently not known. The global regulatory proteins H-NS and Hfq have impact on many cellular processes and have been described to regulate virulence factors as well. Here, we investigate the role of hns and hfq in expression of subAB1 as well as stx2a and cdt-V in an E. coli laboratory strain as well as in wild-type STEC strain TS18/08.


2017 ◽  
Vol 5 (8) ◽  
Author(s):  
Taurai Tasara ◽  
Lisa Fierz ◽  
Jochen Klumpp ◽  
Herbert Schmidt ◽  
Roger Stephan

ABSTRACT We present here the draft genome sequences of five Shiga toxin-producing Escherichia coli (STEC) strains which tested positive in a primary subAB screening. Assembly and annotation of the draft genomes revealed that all strains harbored the recently described allelic variant subAB 2-3 . Based on the sequence data, primers were designed to identify and differentiate this variant.


Sign in / Sign up

Export Citation Format

Share Document