scholarly journals Bioinformatics Analysis and Characterization of Highly Efficient Polyvinyl Alcohol (PVA)-Degrading Enzymes from the Novel PVA Degrader Stenotrophomonas rhizophila QL-P4

2017 ◽  
Vol 84 (1) ◽  
Author(s):  
Yahong Wei ◽  
Jing Fu ◽  
Jianying Wu ◽  
Xinmiao Jia ◽  
Yunheng Zhou ◽  
...  

ABSTRACTPolyvinyl alcohol (PVA) is used widely in industry, and associated environmental pollution is a serious problem. Herein, we report a novel, efficient PVA degrader,Stenotrophomonas rhizophilaQL-P4, isolated from fallen leaves from a virgin forest in the Qinling Mountains. The complete genome was obtained using single-molecule real-time (SMRT) technology and corrected using Illumina sequencing. Bioinformatics analysis revealed eight PVA/vinyl alcohol oligomer (OVA)-degrading genes. Of these, seven genes were predicted to be involved in the classic intracellular PVA/OVA degradation pathway, and one (BAY15_3292) was identified as a novel PVA oxidase. Five PVA/OVA-degrading enzymes were purified and characterized. One of these, BAY15_1712, a PVA dehydrogenase (PVADH), displayed high catalytic efficiency toward PVA and OVA substrate. All reported PVADHs only have PVA-degrading ability. Most importantly, we discovered a novel PVA oxidase (BAY15_3292) that exhibited higher PVA-degrading efficiency than the reported PVADHs. Further investigation indicated that BAY15_3292 plays a crucial role in PVA degradation inS. rhizophilaQL-P4. Knocking out BAY15_3292 resulted in a significant decline in PVA-degrading activity inS. rhizophilaQL-P4. Interestingly, we found that BAY15_3292 possesses exocrine activity, which distinguishes it from classic PVADHs. Transparent circle experiments further proved that BAY15_3292 greatly affects extracellular PVA degradation inS. rhizophilaQL-P4. The exocrine characteristics of BAY15_3292 facilitate its potential application to PVA bioremediation. In addition, we report three new efficient secondary alcohol dehydrogenases (SADHs) with OVA-degrading ability inS. rhizophilaQL-P4; in contrast, only one OVA-degrading SADH was reported previously.IMPORTANCEWith the widespread application of PVA in industry, PVA-related environmental pollution is an increasingly serious issue. Because PVA is difficult to degrade, it accumulates in aquatic environments and causes chronic toxicity to aquatic organisms. Biodegradation of PVA, as an economical and environment-friendly method, has attracted much interest. To date, effective and applicable PVA-degrading bacteria/enzymes have not been reported. Herein, we report a new efficient PVA degrader (S. rhizophilaQL-P4) that has five PVA/OVA-degrading enzymes with high catalytic efficiency, among which BAY15_1712 is the only reported PVADH with both PVA- and OVA-degrading abilities. Importantly, we discovered a novel PVA oxidase (BAY15_3292) that is not only more efficient than other reported PVA-degrading PVADHs but also has exocrine activity. Overall, our findings provide new insight into PVA-degrading pathways in microorganisms and suggestS. rhizophilaQL-P4 and its enzymes have the potential for application to PVA bioremediation to reduce or eliminate PVA-related environmental pollution.

2013 ◽  
Vol 79 (13) ◽  
pp. 4072-4077 ◽  
Author(s):  
Xuguo Duan ◽  
Jian Chen ◽  
Jing Wu

ABSTRACTPullulanase (EC 3.2.1.41) is a well-known starch-debranching enzyme. Its instability and low catalytic efficiency are the major factors preventing its widespread application. To address these issues, Asp437 and Asp503 of the pullulanase fromBacillus deramificanswere selected in this study as targets for site-directed mutagenesis based on a structure-guided consensus approach. Four mutants (carrying the mutations D503F, D437H, D503Y, and D437H/D503Y) were generated and characterized in detail. The results showed that the D503F, D437H, and D503Y mutants had an optimum temperature of 55°C and a pH optimum of 4.5, similar to that of the wild-type enzyme. However, the half-lives of the mutants at 60°C were twice as long as that of the wild-type enzyme. In addition, the D437H/D503Y double mutant displayed a larger shift in thermostability, with an optimal temperature of 60°C and a half-life at 60°C of more than 4.3-fold that of the wild-type enzyme. Kinetic studies showed that theKmvalues for the D503F, D437H, D503Y, and D437H/D503Y mutants decreased by 7.1%, 11.4%, 41.4%, and 45.7% and theKcat/Kmvalues increased by 10%, 20%, 140%, and 100%, respectively, compared to those of the wild-type enzyme. Mechanisms that could account for these enhancements were explored. Moreover, in conjunction with the enzyme glucoamylase, the D503Y and D437H/D503Y mutants exhibited an improved reaction rate and glucose yield during starch hydrolysis compared to those of the wild-type enzyme, confirming the enhanced properties of the mutants. The mutants generated in this study have potential applications in the starch industry.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yuqing He ◽  
Xintian Liu ◽  
Xiaoqing Wang

PurposeThis study aims to build a global environmental quality protection convention to jointly address the problems of environmental pollution governance worldwide.Design/methodology/approachFrom the perspective of environmental pollution of the air, ocean, forest, water and solid waste, the authors summarize the main important measures and mechanisms of environmental pollution governance in various countries.FindingsThe results indicate that management research on biodiversity and natural resources must be strengthened, the relationship between economic development and environmental quality management needs to be balanced, the comparative study of domestic and international environmental governance theories and practices should be strengthened, empirical and applied research on environmental governance needs to be focused on, and complete system research on environmental governance and management should be explored. In the future, further strengthening environmental awareness, addressing environmental pollution and managing environmental quality are necessary.Originality/valueThe environment is the foundation of human survival and development. With the development of economy, contradictions between human and natural environment (e.g. air, ocean, forest and water) have become prominent. Environmental pollution governance cannot only help address existing environmental problems but also solve economic problems of various countries. The prerequisite for sustainable development is to lay a solid foundation for the coordinated development of economic growth and pollution management.


2019 ◽  
Vol 124 ◽  
pp. 10-16 ◽  
Author(s):  
Hongjie Bian ◽  
Mengfei Cao ◽  
Huan Wen ◽  
Zhilei Tan ◽  
Shiru Jia ◽  
...  

2020 ◽  
Vol 2 (10) ◽  
pp. 5-10
Author(s):  
Ishita Agrawal

It is widely known that petroleum hydrocarbons constitute one of the most hazardous pollutants that affect human and environmental health. The ongoing research on bioremediation with petroleum hydrocarbon-degrading bacteria has shown tremendous promise of the technology due to its advantages of high efficiency and eco-friendly nature. To this end, studies have been carried out to identify a large amount of bacterial species with petroleum hydrocarbon-degrading ability for applications in bioremediation. Here, we present a brief perspective of some of the notable advances in oil degrading bacteria and the remedial actions for decontamination of water and soil along with recovering the spilled materials at oil sites.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Masae Horinouchi ◽  
Hiroyuki Koshino ◽  
Michal Malon ◽  
Hiroshi Hirota ◽  
Toshiaki Hayashi

ABSTRACT Comamonas testosteroni TA441 degrades steroids via aromatization of the A ring, followed by degradation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, mainly by β-oxidation. In this study, we revealed that 7β,9α-dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-coenzyme A (CoA) ester is dehydrogenated by (3S)-3-hydroxylacyl CoA-dehydrogenase, encoded by scdE (ORF27), and then the resultant 9α-hydroxy-7,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is converted by 3-ketoacyl-CoA transferase, encoded by scdF (ORF23). With these results, the whole cycle of β-oxidation on the side chain at C-8 of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid is clarified; 9-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is dehydrogenated at C-6 by ScdC1C2, followed by hydration by ScdD. 7β,9α-Dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-CoA ester then is dehydrogenated by ScdE to be converted to 9α-hydroxy-17-oxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid-CoA ester and acetyl-CoA by ScdF. ScdF is an ortholog of FadA6 in Mycobacterium tuberculosis H37Rv, which was reported as a 3-ketoacyl-CoA transferase involved in C ring cleavage. We also obtained results suggesting that ScdF is also involved in C ring cleavage, but further investigation is required for confirmation. ORF25 and ORF26, located between scdF and scdE, encode enzymes belonging to the amidase superfamily. Disrupting either ORF25 or ORF26 did not affect steroid degradation. Among the bacteria having gene clusters similar to those of tesB to tesR, some have both ORF25- and ORF26-like proteins or only an ORF26-like protein, but others do not have either ORF25- or ORF26-like proteins. ORF25 and ORF26 are not crucial for steroid degradation, yet they might provide clues to elucidate the evolution of bacterial steroid degradation clusters. IMPORTANCE Studies on bacterial steroid degradation were initiated more than 50 years ago primarily to obtain materials for steroid drugs. Steroid-degrading bacteria are globally distributed, and the role of bacterial steroid degradation in the environment as well as in relation to human health is attracting attention. The overall aerobic degradation of the four basic steroidal rings has been proposed; however, there is still much to be revealed to understand the complete degradation pathway. This study aims to uncover the whole steroid degradation process in Comamonas testosteroni TA441 as a model of steroid-degrading bacteria. C. testosteroni is one of the most studied representative steroid-degrading bacteria and is suitable for exploring the degradation pathway, because the involvement of degradation-related genes can be determined by gene disruption. Here, we elucidated the entire β-oxidation cycle of the cleaved B ring. This cycle is essential for the following C and D ring cleavage.


2019 ◽  
Vol 201 (10) ◽  
Author(s):  
Karan Gautam Kaval ◽  
Margo Gebbie ◽  
Jonathan R. Goodson ◽  
Melissa R. Cruz ◽  
Wade C. Winkler ◽  
...  

ABSTRACT Ethanolamine (EA) is a compound prevalent in the gastrointestinal (GI) tract that can be used as a carbon, nitrogen, and/or energy source. Enterococcus faecalis, a GI commensal and opportunistic pathogen, contains approximately 20 ethanolamine utilization (eut) genes encoding the necessary regulatory, enzymatic, and structural proteins for this process. Here, using a chemically defined medium, two regulatory factors that affect EA utilization were examined. First, the functional consequences of loss of the small RNA (sRNA) EutX on the efficacy of EA utilization were investigated. One effect observed, as loss of this negative regulator causes an increase in eut gene expression, was a concomitant increase in the number of catabolic bacterial microcompartments (BMCs) formed. However, despite this increase, the growth of the strain was repressed, suggesting that the overall efficacy of EA utilization was negatively affected. Second, utilizing a deletion mutant and a complement, carbon catabolite control protein A (CcpA) was shown to be responsible for the repression of EA utilization in the presence of glucose. A predicted cre site in one of the three EA-inducible promoters, PeutS, was identified as the target of CcpA. However, CcpA was shown to affect the activation of all the promoters indirectly through the two-component system EutV and EutW, whose genes are under the control of the PeutS promoter. Moreover, a bioinformatics analysis of bacteria predicted to contain CcpA and cre sites revealed that a preponderance of BMC-containing operons are likely regulated by carbon catabolite repression (CCR). IMPORTANCE Ethanolamine (EA) is a compound commonly found in the gastrointestinal (GI) tract that can affect the behavior of human pathogens that can sense and utilize it, such as Enterococcus faecalis and Salmonella. Therefore, it is important to understand how the genes that govern EA utilization are regulated. In this work, we investigated two regulatory factors that control this process. One factor, a small RNA (sRNA), is shown to be important for generating the right levels of gene expression for maximum efficiency. The second factor, a transcriptional repressor, is important for preventing expression when other preferred sources of energy are available. Furthermore, a global bioinformatics analysis revealed that this second mechanism of transcriptional regulation likely operates on similar genes in related bacteria.


2019 ◽  
Vol 201 (16) ◽  
Author(s):  
Georg Schmitt ◽  
Martin Saft ◽  
Fabian Arndt ◽  
Jörg Kahnt ◽  
Johann Heider

ABSTRACTAromatic amines like 2-phenylethylamine (2-PEA) and benzylamine (BAm) have been identified as novel growth substrates of the betaproteobacteriumAromatoleum aromaticumEbN1, which degrades a wide variety of aromatic compounds in the absence of oxygen under denitrifying growth conditions. The catabolic pathway of these amines was identified, starting with their oxidative deamination to the corresponding aldehydes, which are then further degraded via the enzymes of the phenylalanine or benzyl alcohol metabolic pathways. Two different periplasmic quinohemoprotein amine dehydrogenases involved in 2-PEA or BAm metabolism were identified and characterized. Both enzymes consist of three subunits, contain two hemeccofactors in their α-subunits, and exhibit extensive processing of their γ-subunits, generating four intramolecular thioether bonds and a cysteine tryptophylquinone (CTQ) cofactor. One of the enzymes was present in cells grown with 2-PEA or other substrates, showed an α2β2γ2composition, and had a rather broad substrate spectrum, which included 2-PEA, BAm, tyramine, and 1-butylamine. In contrast, the other enzyme was specifically induced in BAm-grown cells, showing an αβγ composition and activity only with BAm and 2-PEA. Since the former enzyme showed the highest catalytic efficiency with 2-PEA and the latter with BAm, they were designated 2-PEADH and benzylamine dehydrogenase (BAmDH). The catalytic properties and inhibition patterns of 2-PEADH and BAmDH showed considerable differences and were compared to previously characterized quinohemoproteins of the same enzyme family.IMPORTANCEThe known substrate spectrum ofA. aromaticumEbN1 is expanded toward aromatic amines, which are metabolized as sole substrates coupled to denitrification. The characterization of the two quinohemoprotein isoenzymes involved in degrading either 2-PEA or BAm expands the knowledge of this enzyme family and establishes for the first time that the necessary maturation of their quinoid CTQ cofactors does not require the presence of molecular oxygen. Moreover, the study revealed a highly interesting regulatory phenomenon, suggesting that growth with BAm leads to a complete replacement of 2-PEADH by BAmDH, which has considerably different catalytic and inhibition properties.


2012 ◽  
Vol 56 (11) ◽  
pp. 5678-5686 ◽  
Author(s):  
Mei Li ◽  
Benjamin C. Conklin ◽  
Magdalena A. Taracila ◽  
Rebecca A. Hutton ◽  
Marion J. Skalweit

ABSTRACTAmbler position 105 in class A β-lactamases is implicated in resistance to clavulanic acid, although no clinical isolates with mutations at this site have been reported. We hypothesized that Y105 is important in resistance to clavulanic acid because changes in positioning of the inhibitor for ring oxygen protonation could occur. In addition, resistance to bicyclic 6-methylidene penems, which are interesting structural probes that inhibit all classes of serine β-lactamases with nanomolar affinity, might emerge with substitutions at position 105, especially with nonaromatic substitutions. All 19 variants of SHV-1 with variations at position 105 were prepared. Antimicrobial susceptibility testing showed thatEscherichia coliDH10B expressing Y105 variants retained activity against ampicillin, except for the Y105L variant, which was susceptible to all β-lactams, similar to the case for the host control strain. Several variants had elevated MICs to ampicillin-clavulanate. However, all the variants remained susceptible to piperacillin in combination with a penem inhibitor (MIC, ≤2/4 mg/liter). The Y105E, -F, -M, and -R variants demonstrated reduced catalytic efficiency toward ampicillin compared to the wild-type (WT) enzyme, which was caused by increasedKm. Clavulanic acid and penemKivalues were also increased for some of the variants, especially Y105E. Mutagenesis at position 105 in SHV yields mutants resistant to clavulanate with reduced catalytic efficiency for ampicillin and nitrocefin, similar to the case for the class A carbapenemase KPC-2. Our modeling analyses suggest that resistance is due to oxyanion hole distortion. Susceptibility to a penem inhibitor is retained although affinity is decreased, especially for the Y105E variant. Residue 105 is important to consider when designing new inhibitors.


2011 ◽  
Vol 56 (2) ◽  
pp. 1042-1046 ◽  
Author(s):  
Vera Manageiro ◽  
Eugénia Ferreira ◽  
Antony Cougnoux ◽  
Luís Albuquerque ◽  
Manuela Caniça ◽  
...  

ABSTRACTThe clinicalKlebsiella pneumoniaeINSRA6884 strain exhibited nonsusceptibility to all penicillins tested (MICs of 64 to >2,048 μg/ml). The MICs of penicillins were weakly reduced by clavulanate (from 2,048 to 512 μg/ml), and tazobactam restored piperacillin susceptibility. Molecular characterization identified the genesblaGES-7and a new β-lactamase gene,blaSHV-107, which encoded an enzyme that differed from SHV-1 by the amino acid substitutions Leu35Gln and Thr235Ala. The SHV-107-producingEscherichia colistrain exhibited only a β-lactam resistance phenotype with respect to amoxicillin, ticarcillin, and amoxicillin-clavulanate combination. The kinetic parameters of the purified SHV-107 enzyme revealed a high affinity for penicillins. However, catalytic efficiency for these antibiotics was lower for SHV-107 than for SHV-1. No hydrolysis was detected against oxyimino-β-lactams. The 50% inhibitory concentration (IC50) for clavulanic acid was 9-fold higher for SHV-107 than for SHV-1, but the inhibitory effects of tazobactam were unchanged. Molecular dynamics simulation suggested that the Thr235Ala substitution affects the accommodation of clavulanate in the binding site and therefore its inhibitory activity.


Sign in / Sign up

Export Citation Format

Share Document