Characterization of Virulence and Persistence Abilities of Listeria monocytogenes Strains Isolated from Food Processing Premises

2019 ◽  
Vol 82 (11) ◽  
pp. 1922-1930 ◽  
Author(s):  
BEATRIZ MANSO ◽  
BEATRIZ MELERO ◽  
BEATRIX STESSL ◽  
ISABEL FERNÁNDEZ-NATAL ◽  
ISABEL JAIME ◽  
...  

ABSTRACT We report the characterization of 15 Listeria monocytogenes strains isolated from various food processing plants by multivirulence locus sequence typing to determine virulence types (VTs) and epidemic clones. Molecular mechanisms involved in adaptation to food processing environments and related to virulence were also studied. Phenotypic behaviors associated with various antimicrobials, biofilm formations, and invasiveness were assessed. There were 11 VTs among the 15 L. monocytogenes strains. Strains belonging to six VTs were stress survival islet 1 (SSI-1) and one strain of VT94 was SSI-2. Tn6188 was found in VT6 and VT94 strains, and bcrABC cassette genes were identified in VT21, VT60, and VT63 strains. Only one strain, in VT20, showed llxS, whereas a full-size inlA was detected in strains belonging to VT8, VT20, VT21, and VT63. VT10, VT20, VT21, VT60, and VT63 strains were the most tolerant to studied disinfectants. A VT6 strain showed the strongest biofilm formation ability in polyvinyl chloride, and strains belonging to VT10, VT11, VT20, and VT94 had moderate abilities. Antimicrobial sensitivity tests showed that all the L. monocytogenes strains were multidrug resistant. F tests revealed that only strains of VT10, VT60, and VT94 were significantly noninvasive (P < 0.05) in Caco-2 cells. Our findings illustrate how L. monocytogenes isolates exploit diverse mechanisms to adapt to adverse conditions. Consequently, detailed characterization of L. monocytogenes isolates is required for comprehensive elimination of this pathogenic bacterium in food processing environments.

2010 ◽  
Vol 76 (24) ◽  
pp. 8231-8238 ◽  
Author(s):  
Driss Elhanafi ◽  
Vikrant Dutta ◽  
Sophia Kathariou

ABSTRACT Quaternary ammonium compounds such as benzalkonium chloride (BC) are widely used as disinfectants in both food processing and medical environments. BC-resistant strains of Listeria monocytogenes have been implicated in multistate outbreaks of listeriosis and have been frequently isolated from food processing plants. However, the genetic basis for BC resistance in L. monocytogenes remains poorly understood. In this study, we have characterized a plasmid (pLM80)-associated BC resistance cassette in L. monocytogenes H7550, a strain implicated in the 1998-1999 multistate outbreak involving contaminated hot dogs. The BC resistance cassette (bcrABC) restored resistance to BC (MIC, 40 μg/ml) in a plasmid-cured derivative of H7550. All three genes of the cassette were essential for imparting BC resistance. The transcription of H7550 BC resistance genes was increased under sublethal (10 μg/ml) BC exposure and was higher at reduced temperatures (4, 8, or 25°C) than at 37°C. The level of transcription was higher at 10 μg/ml than at 20 or 40 μg/ml. In silico analysis suggested that the BC resistance cassette was harbored by an IS1216 composite transposon along with other genes whose functions are yet to be determined. The findings from this study will further our understanding of the adaptations of this organism to disinfectants such as BC and may contribute to the elucidation of possible BC resistance dissemination in L. monocytogenes.


2020 ◽  
Vol 8 (4) ◽  
pp. 521 ◽  
Author(s):  
Beatriz Manso ◽  
Beatriz Melero ◽  
Beatrix Stessl ◽  
Isabel Jaime ◽  
Martin Wagner ◽  
...  

The stress response of 11 strains of Listeria monocytogenes to oxidative stress was studied. The strains included ST1, ST5, ST7, ST6, ST9, ST87, ST199 and ST321 and were isolated from diverse food processing environments (a meat factory, a dairy plant and a seafood company) and sample types (floor, wall, drain, boxes, food products and water machine). Isolates were exposed to two oxidizing agents: 13.8 mM cumene hydroperoxide (CHP) and 100 mM hydrogen peroxide (H2O2) at 10 °C and 37 °C. Temperature affected the oxidative stress response as cells treated at 10 °C survived better than those treated at 37 °C. H2O2 at 37 °C was the condition tested resulting in poorest L. monocytogenes survival. Strains belonging to STs of Lineage I (ST5, ST6, ST87, ST1) were more resistant to oxidative stress than those of Lineage II (ST7, ST9, ST199 and ST321), with the exception of ST7 that showed tolerance to H2O2 at 10 °C. Isolates of each ST5 and ST9 from different food industry origins showed differences in oxidative stress response. The gene expression of two relevant virulence (hly) and stress (clpC) genes was studied in representative isolates in the stressful conditions. hly and clpC were upregulated during oxidative stress at low temperature. Our results indicate that conditions prevalent in food industries may allow L. monocytogenes to develop survival strategies: these include activating molecular mechanisms based on cross protection that can promote virulence, possibly increasing the risk of virulent strains persisting in food processing plants.


2007 ◽  
Vol 73 (16) ◽  
pp. 5235-5244 ◽  
Author(s):  
Rachel Gamble ◽  
Peter M. Muriana

ABSTRACT Listeria monocytogenes is a significant food-borne pathogen that is capable of adhering to and producing biofilms on processing equipment, making it difficult to eliminate from meat-processing environments and allowing potential contamination of ready-to-eat (RTE) products. We devised a fluorescence-based microplate method for screening isolates of L. monocytogenes for the ability to adhere to abiotic surfaces. Strains of L. monocytogenes were incubated for 2 days at 30°C in 96-well microplates, and the plates were washed in a plate washer. The retained cells were incubated for 15 min at 25°C with 5,6-carboxyfluorescein diacetate and washed again, and then the fluorescence was read with a plate reader. Several enzymatic treatments (protease, lipase, and cellulase) were effective in releasing adherent cells from the microplates, and this process was used for quantitation on microbiological media. Strongly adherent strains of L. monocytogenes were identified that had 15,000-fold-higher levels of fluorescence and 100,000-fold-higher plate counts in attachment assays than weakly adherent strains. Strongly adherent strains of L. monocytogenes adhered equally well to four different substrates (glass, plastic, rubber, and stainless steel); showed high-level attachment on microplates at 10, 20, 30, and 40°C; and showed significant differences from weakly adherent strains when examined by scanning electron microscopy. A greater incidence of strong adherence was observed for strains isolated from RTE meats than for those isolated from environmental surfaces. Analysis of surface adherence among Listeria isolates from processing environments may provide a better understanding of the molecular mechanisms involved in attachment and suggest solutions to eliminate them from food-processing environments.


2020 ◽  
Vol 51 (3) ◽  
pp. 1259-1267
Author(s):  
Arley Caraballo Guzmán ◽  
Maria Isabel González Hurtado ◽  
Yesid Cuesta-Astroz ◽  
Giovanny Torres

2011 ◽  
Vol 77 (20) ◽  
pp. 7104-7112 ◽  
Author(s):  
Maria Karczmarczyk ◽  
Yvonne Abbott ◽  
Ciara Walsh ◽  
Nola Leonard ◽  
Séamus Fanning

ABSTRACTIn this study, we examined molecular mechanisms associated with multidrug resistance (MDR) in a collection ofEscherichia coliisolates recovered from hospitalized animals in Ireland. PCR and DNA sequencing were used to identify genes associated with resistance. Class 1 integrons were prevalent (94.6%) and contained gene cassettes recognized previously and implicated mainly in resistance to aminoglycosides, β-lactams, and trimethoprim (aadA1,dfrA1-aadA1,dfrA17-aadA5,dfrA12-orfF-aadA2,blaOXA-30-aadA1,aacC1-orf1-orf2-aadA1,dfr7). Class 2 integrons (13.5%) contained thedfrA1-sat1-aadA1gene array. The most frequently occurring phenotypes included resistance to ampicillin (97.3%), chloramphenicol (75.4%), florfenicol (40.5%), gentamicin (54%), neomycin (43.2%), streptomycin (97.3%), sulfonamide (98.6%), and tetracycline (100%). The associated resistance determinants detected includedblaTEM,cat,floR,aadB,aphA1,strA-strB,sul2, andtet(B), respectively. TheblaCTX-M-2gene, encoding an extended-spectrum β-lactamase (ESβL), andblaCMY-2, encoding an AmpC-like enzyme, were identified in 8 and 18 isolates, respectively. The mobility of the resistance genes was demonstrated using conjugation assays with a representative selection of isolates. High-molecular-weight plasmids were found to be responsible for resistance to multiple antimicrobial compounds. The study demonstrated that animal-associated commensalE. coliisolates possess a diverse repertoire of transferable genetic determinants. Emergence of ESβLs and AmpC-like enzymes is particularly significant. To our knowledge, theblaCTX-M-2gene has not previously been reported in Ireland.


2012 ◽  
Vol 78 (19) ◽  
pp. 6938-6945 ◽  
Author(s):  
Shakir S. Ratani ◽  
Robin M. Siletzky ◽  
Vikrant Dutta ◽  
Suleyman Yildirim ◽  
Jason A. Osborne ◽  
...  

ABSTRACTThe persistence ofListeria monocytogenesin food processing plants and other ecosystems reflects its ability to adapt to numerous stresses. In this study, we investigated 138 isolates from foods and food processing plants for resistance to the quaternary ammonium disinfectant benzalkonium chloride (BC) and to heavy metals (cadmium and arsenic). We also determined the prevalence of distinct cadmium resistance determinants (cadA1,cadA2, andcadA3) among cadmium-resistant isolates. Most BC-resistant isolates were resistant to cadmium as well. Arsenic resistance was encountered primarily in serotype 4b and was an attribute of most isolates of the serotype 4b epidemic clonal group ECIa. Prevalence of the known cadmium resistance determinants was serotype associated:cadA1was more common in isolates of serotypes 1/2a and 1/2b than 4b, whilecadA2was more common in those of serotype 4b. A subset (15/77 [19%]) of the cadmium-resistant isolates lacked the known cadmium resistance determinants. Most of these isolates were of serotype 4b and were also resistant to arsenic, suggesting novel determinants that may confer resistance to both cadmium and arsenic in these serotype 4b strains. The findings may reflect previously unrecognized components of the ecological history of different serotypes and clonal groups ofL. monocytogenes, including exposures to heavy metals and disinfectants.


2014 ◽  
Vol 77 (1) ◽  
pp. 150-170 ◽  
Author(s):  
V. FERREIRA ◽  
M. WIEDMANN ◽  
P. TEIXEIRA ◽  
M. J. STASIEWICZ

Over the last 10 to 15 years, increasing evidence suggests that persistence of Listeria monocytogenes in food processing plants for years or even decades is an important factor in the transmission of this foodborne pathogen and the root cause of a number of human listeriosis outbreaks. L. monocytogenes persistence in other food-associated environments (e.g., farms and retail establishments) may also contribute to food contamination and transmission of the pathogen to humans. Although L. monocytogenes persistence is typically identified through isolation of a specific molecular subtype from samples collected in a given environment over time, formal (statistical) criteria for identification of persistence are undefined. Environmental factors (e.g., facilities and equipment that are difficult to clean) have been identified as key contributors to persistence; however, the mechanisms are less well understood. Although some researchers have reported that persistent strains possess specific characteristics that may facilitate persistence (e.g., biofilm formation and better adaptation to stress conditions), other researchers have not found significant differences between persistent and nonpersistent strains in the phenotypic characteristics that might facilitate persistence. This review includes a discussion of our current knowledge concerning some key issues associated with the persistence of L. monocytogenes, with special focus on (i) persistence in food processing plants and other food-associated environments, (ii) persistence in the general environment, (iii) phenotypic and genetic characteristics of persistent strains, (iv) niches, and (v) public health and economic implications of persistence. Although the available data clearly indicate that L. monocytogenes persistence at various stages of the food chain contributes to contamination of finished products, continued efforts to quantitatively integrate data on L. monocytogenes persistence (e.g., meta-analysis or quantitative microbial risk assessment) will be needed to advance our understanding of persistence of this pathogen and its economic and public health impacts.


2019 ◽  
Vol 82 (2) ◽  
pp. 233-237 ◽  
Author(s):  
VALENTINA ALESSANDRIA ◽  
KALLIOPI RANTSIOU ◽  
MARIA CHIARA CAVALLERO ◽  
LUCA SIMONE COCOLIN

ABSTRACT Listeria monocytogenes can be introduced into food processing plants via raw material of animal or plant origin and can establish endemic populations through formation of biofilms. Biofilms are a continuous source of contamination for food products, and L. monocytogenes cells in biofilms are more resistant to stress and sanitizing agents than are planktonic cells. The use of gas-discharge plasmas may offer a feasible alternative to conventional sanitization methods. Plasmas are a mixture of charged particles, chemically reactive species, and UV radiation and can be used to destroy microorganisms. The purpose of this study was to measure the effectiveness of cold atmospheric pressure plasma (APP) treatments against bacteria attached to a solid surface and to evaluate the individual susceptibility of various L. monocytogenes strains. Attention was focused on the state of the cells after treatment, combining detection by viable counts and quantitative PCR (qPCR). Most of the culturable cells were inactivated after APP treatment, but the qPCR assay targeting the 16S rRNA revealed the presence of injured cells or their entrance into the viable but nonculturable state. These results were at least partly confirmed by a resuscitation experiment. After APP treatment, L. monocytogenes cell suspensions were incubated in brain heart infusion broth; some cells grew in the medium and therefore had survived the treatment. An understanding of the effects of APP on L. monocytogenes can inform the development of sanitation programs incorporating APP for pathogen removal. Methods other than those based of the culturability of the cells should be used to monitor pathogens in food processing plants because cultivation alone may underestimate the actual microbial load.


2021 ◽  
Vol 99 ◽  
pp. 103779
Author(s):  
Aida Pérez-Baltar ◽  
David Pérez-Boto ◽  
Margarita Medina ◽  
Raquel Montiel

2013 ◽  
Vol 79 (19) ◽  
pp. 6067-6074 ◽  
Author(s):  
Vikrant Dutta ◽  
Driss Elhanafi ◽  
Sophia Kathariou

ABSTRACTAnalysis of a panel of 116Listeria monocytogenesstrains of diverse serotypes and sources (clinical, environment of food processing plants, and food) revealed that all but one of the 71 benzalkonium chloride-resistant (BCr) isolates harboredbcrABC, previously identified on a large plasmid (pLM80) of the 1998-1999 hot dog outbreak strain H7858. In contrast,bcrABCwas not detected among BC-susceptible (BCs) isolates. ThebcrABCsequences were highly conserved among strains of different serotypes, but variability was noted in sequences flankingbcrABC. The majority of the BCrisolates had either the pLM80-type of organization of thebcrABCregion or appeared to harborbcrABCon the chromosome, adjacent to novel sequences. Transcription ofbcrABCwas induced by BC (10 μg/ml) in strains of different serotypes and diversebcrABCregion organization. These findings reveal widespread dissemination ofbcrABCacross BCrL. monocytogenesstrains regardless of serotype and source, while also suggesting possible mechanisms ofbcrABCdissemination acrossL. monocytogenesgenomes.


Sign in / Sign up

Export Citation Format

Share Document