scholarly journals Identification and Characterization of the Phage Gene sav, Involved in Sensitivity to the Lactococcal Abortive Infection Mechanism AbiV

2009 ◽  
Vol 75 (8) ◽  
pp. 2484-2494 ◽  
Author(s):  
Jakob Haaber ◽  
Geneviève M. Rousseau ◽  
Karin Hammer ◽  
Sylvain Moineau

ABSTRACT Lactococcus lactis phage mutants that are insensitive to the recently characterized abortive infection mechanism AbiV were isolated and analyzed in an effort to elucidate factors involved in the sensitivity to AbiV. Whole-genome sequencing of the phage mutants p2.1 and p2.2 revealed mutations in an orf that is transcribed early, indicating that this orf was responsible for AbiV sensitivity. Sequencing of the homologous regions in the genomes of other AbiV-insensitive mutants derived from p2 and six other lactococcal wild-type phages revealed point mutations in the homologous orf sequences. The orf was named sav (for sensitivity to AbiV), and the encoded polypeptide was named SaV. The purification of a His-tagged SaV polypeptide by gel filtration suggested that the polypeptide formed a dimer in its native form. The overexpression of SaV in L. lactis and Escherichia coli led to a rapid toxic effect. Conserved, evolutionarily related regions in SaV polypeptides of different phage groups are likely to be responsible for the AbiV-sensitive phenotype and the toxicity.

2005 ◽  
Vol 387 (1) ◽  
pp. 271-280 ◽  
Author(s):  
Seonghun KIM ◽  
Sun Bok LEE

The extremely thermoacidophilic archaeon Sulfolobus solfataricus utilizes D-glucose as a sole carbon and energy source through the non-phosphorylated Entner–Doudoroff pathway. It has been suggested that this micro-organism metabolizes D-gluconate, the oxidized form of D-glucose, to pyruvate and D-glyceraldehyde by using two unique enzymes, D-gluconate dehydratase and 2-keto-3-deoxy-D-gluconate aldolase. In the present study, we report the purification and characterization of D-gluconate dehydratase from S. solfataricus, which catalyses the conversion of D-gluconate into 2-keto-3-deoxy-D-gluconate. D-Gluconate dehydratase was purified 400-fold from extracts of S. solfataricus by ammonium sulphate fractionation and chromatography on DEAE-Sepharose, Q-Sepharose, phenyl-Sepharose and Mono Q. The native protein showed a molecular mass of 350 kDa by gel filtration, whereas SDS/PAGE analysis provided a molecular mass of 44 kDa, indicating that D-gluconate dehydratase is an octameric protein. The enzyme showed maximal activity at temperatures between 80 and 90 °C and pH values between 6.5 and 7.5, and a half-life of 40 min at 100 °C. Bivalent metal ions such as Co2+, Mg2+, Mn2+ and Ni2+ activated, whereas EDTA inhibited the enzyme. A metal analysis of the purified protein revealed the presence of one Co2+ ion per enzyme monomer. Of the 22 aldonic acids tested, only D-gluconate served as a substrate, with Km=0.45 mM and Vmax=0.15 unit/mg of enzyme. From N-terminal sequences of the purified enzyme, it was found that the gene product of SSO3198 in the S. solfataricus genome database corresponded to D-gluconate dehydratase (gnaD). We also found that the D-gluconate dehydratase of S. solfataricus is a phosphoprotein and that its catalytic activity is regulated by a phosphorylation–dephosphorylation mechanism. This is the first report on biochemical and genetic characterization of D-gluconate dehydratase involved in the non-phosphorylated Entner–Doudoroff pathway.


1993 ◽  
Vol 13 (5) ◽  
pp. 2718-2729
Author(s):  
S F Kash ◽  
J W Innis ◽  
A U Jackson ◽  
R E Kellems

Transcription arrest plays a role in regulating the expression of a number of genes, including the murine adenosine deaminase (ADA) gene. We have previously identified two prominent arrest sites at the 5' end of the ADA gene: one in the first exon and one in the first intron (J. W. Innis and R. E. Kellems, Mol. Cell. Biol. 11:5398-5409, 1991). Here we report the functional characterization of the intron 1 arrest site, located 137 to 145 nucleotides downstream of the cap site. We have determined, using gel filtration, that the intron 1 arrest site is a stable RNA polymerase II pause site and that the transcription elongation factor SII promotes read-through at this site. Additionally, the sequence determinants for the pause are located within a 37-bp fragment encompassing this site (+123 to +158) and can direct transcription arrest in an orientation-dependent manner in the context of the ADA and adenovirus major late promoters. Specific point mutations in this region increase or decrease the relative pausing efficiency. We also show that the sequence determinants for transcription arrest can function when placed an additional 104 bp downstream of their natural position.


2009 ◽  
Vol 84 (5) ◽  
pp. 2294-2303 ◽  
Author(s):  
Yuliang Liu ◽  
Luis Cocka ◽  
Atsushi Okumura ◽  
Yong-An Zhang ◽  
J. Oriol Sunyer ◽  
...  

ABSTRACT The filovirus VP40 protein is capable of budding from mammalian cells in the form of virus-like particles (VLPs) that are morphologically indistinguishable from infectious virions. Ebola virus VP40 (eVP40) contains well-characterized overlapping L domains, which play a key role in mediating efficient virus egress. L domains represent only one component required for efficient budding and, therefore, there is a need to identify and characterize additional domains important for VP40 function. We demonstrate here that the 96LPLGVA101 sequence of eVP40 and the corresponding 84LPLGIM89 sequence of Marburg virus VP40 (mVP40) are critical for efficient release of VP40 VLPs. Indeed, deletion of these motifs essentially abolished the ability of eVP40 and mVP40 to bud as VLPs. To address the mechanism by which the 96LPLGVA101 motif of eVP40 contributes to egress, a series of point mutations were introduced into this motif. These mutants were then compared to the eVP40 wild type in a VLP budding assay to assess budding competency. Confocal microscopy and gel filtration analyses were performed to assess their pattern of intracellular localization and ability to oligomerize, respectively. Our results show that mutations disrupting the 96LPLGVA101 motif resulted in both altered patterns of intracellular localization and self-assembly compared to wild-type controls. Interestingly, coexpression of either Ebola virus GP-WT or mVP40-WT with eVP40-ΔLPLGVA failed to rescue the budding defective eVP40-ΔLPLGVA mutant into VLPs; however, coexpression of eVP40-WT with mVP40-ΔLPLGIM successfully rescued budding of mVP40-ΔLPLGIM into VLPs at mVP40-WT levels. In sum, our findings implicate the LPLGVA and LPLGIM motifs of eVP40 and mVP40, respectively, as being important for VP40 structure/stability and budding.


Author(s):  
Marco A. Riojas ◽  
Andrew M. Frank ◽  
Samuel R. Greenfield ◽  
Stephen P. King ◽  
Conor J. Meehan ◽  
...  

2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Jaeyres Jani ◽  
Siti Fatimah Abu Bakar ◽  
Zainal Arifin Mustapha ◽  
Chin Kai Ling ◽  
Roddy Teo ◽  
...  

This is a report on the whole-genome sequence of Mycobacterium tuberculosis strain SBH163, which was isolated from a patient in the Malaysian Borneo state of Sabah. This report provides insight into the molecular characteristics of an M. tuberculosis Beijing genotype strain related to strains from Russia and South Africa.


2003 ◽  
Vol 375 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Dimitri HARMEGNIES ◽  
Xiao-Ming WANG ◽  
Paul VANDENBUSSCHE ◽  
Arnaud LEON ◽  
Patricia VUSIO ◽  
...  

Human interleukin-11 (hIL-11) is a multi-potential cytokine that is involved in numerous biological activities, such as haematopoiesis, osteoclastogenesis, neurogenesis and female fertility, and also displays anti-inflammatory properties. IL-11 is used clinically to treat chemotherapy-induced thrombocytopenia. Because of its broad spectrum of action, improved IL-11 agonists, as well as IL-11 antagonists, could be of interest for numerous clinical applications. IL-11 signalling is dependent on the formation of a tripartite ligand–receptor complex consisting of IL-11, the IL-11R (IL-11 receptor) α subunit (responsible for the specificity of the interaction) and gp130 (glycoprotein 130) receptor β subunit (responsible for signal transduction). The interaction between IL-11 and IL-11Rα subunit occurs at its recently assigned site I. We have designed an IL-11 mutein whose hydrophobicity at site I has been increased. The mutein has been characterized in terms of structure, affinity, specificity and bioactivity. Electrophoretic analysis, gel filtration, IR spectroscopy and CD indicate that this new protein is more compact than wild-type IL-11. It binds to IL-11Rα with a three-fold-enhanced affinity, and retains the ability to recruit gp130 through site II. However, analysis of its biological activity revealed a complex pattern: although this mutein is 60–400-fold more active than wild-type IL-11 on the proliferation of 7TD1 murine hybridoma cell, it is less active than IL-11 on the proliferation of B9 cells, another murine hybridoma cell line. The results are interpreted on the basis of an IL-11 conformational change induced by the mutations, and the preferential use by the mutein of another unknown transducing receptor chain.


2006 ◽  
Vol 72 (4) ◽  
pp. 3036-3041 ◽  
Author(s):  
Martin Duplessis ◽  
Céline M. Lévesque ◽  
Sylvain Moineau

ABSTRACT To investigate phage-host interactions in Streptococcus thermophilus, a phage-resistant derivative (SMQ-301R) was obtained by challenging a Tn917 library of phage-sensitive strain S. thermophilus SMQ-301 with virulent phage DT1. Mutants of phages DT1 and MD2 capable of infecting SMQ-301 and SMQ-301R were isolated at a frequency of 10−6. Four host range phage mutants were analyzed further and compared to the two wild-type phages. Altogether, three genes (orf15, orf17, and orf18) contained point mutations leading to amino acid substitutions and were responsible for the expanded host range. These three proteins were also identified in both phages by N-terminal sequencing and/or matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. The results suggest that at least three phage structural proteins may be involved in phage-host interactions in S. thermophilus.


1999 ◽  
Vol 181 (14) ◽  
pp. 4318-4325 ◽  
Author(s):  
Masaru Ohara ◽  
Henry C. Wu ◽  
Krishnan Sankaran ◽  
Paul D. Rick

ABSTRACT We report here the identification of a new lipoprotein, NlpI, inEscherichia coli K-12. The NlpI structural gene (nlpI) is located between the genes pnp(polynucleotide phosphorylase) and deaD (RNA helicase) at 71 min on the E. coli chromosome. The nlpI gene encodes a putative polypeptide of approximately 34 kDa, and multiple lines of evidence clearly demonstrate that NlpI is indeed a lipoprotein. An nlpI::cm mutation rendered growth of the cells osmotically sensitive, and incubation of the insertion mutant at an elevated temperature resulted in the formation of filaments. The altered phenotype of the mutant was a direct consequence of the mutation in nlpI, since it was complemented by the wild-type nlpI gene alone. Overexpression of the unaltered nlpI gene in wild-type cells resulted in the loss of the rod morphology and the formation of single prolate ellipsoids and pairs of prolate ellipsoids joined by partial constrictions. NlpI may be important for an as-yet-undefined step in the overall process of cell division.


1999 ◽  
Vol 181 (19) ◽  
pp. 5915-5921 ◽  
Author(s):  
Florence Y. An ◽  
Mark C. Sulavik ◽  
Don B. Clewell

ABSTRACT Plasmid-free strains of Enterococcus faecalis secrete a peptide sex pheromone, cAD1, which specifically induces a mating response by donors carrying the hemolysin plasmid pAD1 or related elements. A determinant on the E. faecalis OG1X chromosome has been found to encode a 46.5-kDa protein that plays an important role in the production of the extracellular cAD1. Wild-type E. faecalis OG1X cells harboring a plasmid chimera carrying the determinant exhibited an eightfold enhanced production of cAD1, and plasmid-free cells carrying a mutated chromosomal determinant secreted undetectable or very low amounts of the pheromone. The production of other pheromones such as cPD1, cOB1, and cCF10 was also influenced, although there was no effect on the pheromone cAM373. The determinant, designated eep (for enhanced expression of pheromone), did not include the sequence of the pheromone. Its deduced product (Eep) contains apparent membrane-spanning sequences; conceivably it is involved in processing a pheromone precursor structure or in some way regulates expression or secretion.


2018 ◽  
Author(s):  
Rémi Hocq ◽  
Maxime Bouilloux-Lafont ◽  
Nicolas Lopes Ferreira ◽  
François Wasels

Microbial production of butanol and isopropanol, two high value-added chemicals, is naturally occurring in the solventogenic Clostridium beijerinckii DSM 6423. Despite its ancient discovery, the precise mechanisms controlling alcohol synthesis in this microorganism are poorly understood. In this work, an allyl alcohol tolerant strain obtained by random mutagenesis was characterized. This strain, designated as the AA mutant, shows a dominant production of acids, a severely diminished butanol synthesis capacity, and produces acetone instead of isopropanol. Interestingly, this solvent-deficient strain was also found to have a limited consumption of two carbohydrates and to be still able to form spores, highlighting its particular phenotype. Sequencing of the AA mutant revealed point mutations in several genes including CIBE_0767 (sigL), which encodes the σ54 sigma factor. Complementation with the wild-type sigL gene fully restored solvent production and sugar assimilation, demonstrating that σ54 plays a central role in regulating these pathways in C. beijerinckii DSM 6423. Genomic comparison with other strains further revealed that these functions are probably conserved among the C. beijerinckii strains. The importance of σ54 in C. beijerinckii was further assessed by the characterization of a sigL deletion mutant of the model strain NCIMB 8052 obtained with a CRISPR/Cas9 tool. The resulting mutant exhibited phenotypic traits similar to the AA strain, and was subsequently complemented with the sigL gene from either the wild type or the AA strains. The results of this experiment confirmed the crucial role of σ54 in the regulation of both solventogenesis and sugar consumption pathways in C. beijerinckii.


Sign in / Sign up

Export Citation Format

Share Document