scholarly journals The Intimin-Like Protein FdeC Is Regulated by H-NS and Temperature in Enterohemorrhagic Escherichia coli

2014 ◽  
Vol 80 (23) ◽  
pp. 7337-7347 ◽  
Author(s):  
Donna M. Easton ◽  
Luke P. Allsopp ◽  
Minh-Duy Phan ◽  
Danilo Gomes Moriel ◽  
Guan Kai Goh ◽  
...  

ABSTRACTEnterohemorrhagicEscherichia coli(EHEC) is a Shiga-toxigenic pathogen capable of inducing severe forms of enteritis (e.g., hemorrhagic colitis) and extraintestinal sequelae (e.g., hemolytic-uremic syndrome). The molecular basis of colonization of human and animal hosts by EHEC is not yet completely understood, and an improved understanding of EHEC mucosal adherence may lead to the development of interventions that could disrupt host colonization. FdeC, also referred to by its IHE3034 locus tag ECOK1_0290, is an intimin-like protein that was recently shown to contribute to kidney colonization in a mouse urinary tract infection model. The expression of FdeC is tightly regulatedin vitro, and FdeC shows promise as a vaccine candidate against extraintestinalE. colistrains. In this study, we characterized the prevalence, regulation, and function offdeCin EHEC. We showed that thefdeCgene is conserved in both O157 and non-O157 EHEC and encodes a protein that is expressed at the cell surface and promotes biofilm formation under continuous-flow conditions in a recombinantE. colistrain background. We also identified culture conditions under which FdeC is expressed and showed that minor alterations of these conditions, such as changes in temperature, can significantly alter the level of FdeC expression. Additionally, we demonstrated that the transcription of thefdeCgene is repressed by the global regulator H-NS. Taken together, our data suggest a role for FdeC in EHEC when it grows at temperatures above 37°C, a condition relevant to its specialized niche at the rectoanal junctions of cattle.


2016 ◽  
Vol 82 (21) ◽  
pp. 6326-6334 ◽  
Author(s):  
Christina Böhnlein ◽  
Jan Kabisch ◽  
Diana Meske ◽  
Charles M. A. P. Franz ◽  
Rohtraud Pichner

ABSTRACTIn 2011, one of the world's largest outbreaks of hemolytic-uremic syndrome (HUS) occurred, caused by a rareEscherichia coliserotype, O104:H4, that shared the virulence profiles of Shiga toxin-producingE. coli(STEC)/enterohemorrhagicE. coli(EHEC) and enteroaggregativeE. coli(EAEC). The persistence and fitness factors of the highly virulent EHEC/EAEC O104:H4 strain, grown either in food orin vitro, were compared with those ofE. coliO157 outbreak-associated strains. The log reduction rates of the different EHEC strains during the maturation of fermented sausages were not significantly different. Both the O157:NM and O104:H4 serotypes could be shown by qualitative enrichment to be present after 60 days of sausage storage. Moreover, the EHEC/EAEC O104:H4 strain appeared to be more viable thanE. coliO157:H7 under conditions of decreased pH and in the presence of sodium nitrite. Analysis of specific EHEC strains in experiments with an EHEC inoculation cocktail showed a dominance of EHEC/EAEC O104:H4, which could be isolated from fermented sausages for 60 days. Inhibitory activities of EHEC/EAEC O104:H4 toward severalE. colistrains, including serotype O157 strains, could be determined. Our study suggests that EHEC/EAEC O104:H4 is well adapted to the multiple adverse conditions occurring in fermented raw sausages. Therefore, it is strongly recommended that STEC strain cocktails composed of several serotypes, instead ofE. coliO157:H7 alone, be used in food risk assessments. The enhanced persistence of EHEC/EAEC O104:H4 as a result of its robustness, as well as the production of bacteriocins, may account for its extraordinary virulence potential.IMPORTANCEIn 2011, a severe outbreak caused by an EHEC/EAEC serovar O104:H4 strain led to many HUS sequelae. In this study, the persistence of the O104:H4 strain was compared with those of other outbreak-relevant STEC strains under conditions of fermented raw sausage production. Both O157:NM and O104:H4 strains could survive longer during the production of fermented sausages thanE. coliO157:H7 strains.E. coliO104:H4 was also shown to be well adapted to the multiple adverse conditions encountered in fermented sausages, and the secretion of a bacteriocin may explain the competitive advantage of this strain in an EHEC strain cocktail. Consequently, this study strongly suggests that enhanced survival and persistence, and the presumptive production of a bacteriocin, may explain the increased virulence of the O104:H4 outbreak strain. Furthermore, this strain appears to be capable of surviving in a meat product, suggesting that meat should not be excluded as a source of potentialE. coliO104:H4 infection.



1998 ◽  
Vol 36 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Clemens Hofinger ◽  
Helge Karch ◽  
Herbert Schmidt

In this study, pColD157, a 6.7-kb colicinogenic plasmid of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain CL40cu, was characterized by restriction mapping and determination of its complete nucleotide sequence. The sequence consists of 6,675 bp and shows a high degree of similarity to the nucleotide sequence of colicinogenic plasmids pColD-CA23 and pColK. Seven potential genes were located on pColD157, three of which were closely related (>97.9%) to the colicin D structural gene and the corresponding immunity and lysis genes of plasmid pColD-CA23, and these were therefore designatedcda, cdi, and cdl, respectively, using the reference extension -CL40 for differentiation. The adjacent 3′ region is related to the origin of replication of pColD-CA23. In contrast, the remaining part of the plasmid harbors a cluster of genes, closely related to the mobilization genes of pColK, which is followed by a 0.3-kb stretch homologous to the pColK resolution function. These determinants were designated mbdA, mbdB,mbdC, and mbdD and cdr, respectively. Southern blot analysis was performed with a probe specific for the cda gene of pColD157 and two groups of EHEC O157:H7 isolates from patients with diarrhea or hemolytic-uremic syndrome resident in Germany. Whereas 16 of 46 E. coli O157 strains isolated between 1987 and 1991 harbored plasmid pColD157, only 1 of 50 strains isolated during 1996 carried this plasmid. In addition, all strains harboring plasmid pColD157 were shown to have colicinogenic activity.



2020 ◽  
Vol 65 (1) ◽  
pp. e01172-20 ◽  
Author(s):  
Yu-Feng Zhou ◽  
Ping Liu ◽  
Shu-He Dai ◽  
Jian Sun ◽  
Ya-Hong Liu ◽  
...  

ABSTRACTAlternative therapeutic options are urgently needed against multidrug-resistant Escherichia coli infections, especially in situations of preexisting tigecycline and colistin resistance. Here, we investigated synergistic activity of the antiretroviral drug zidovudine in combination with tigecycline or colistin against E. coli harboring tet(X) and mcr-1 in vitro and in a murine thigh infection model. Zidovudine and tigecycline/colistin combinations achieved synergistic killing and significantly decreased bacterial burdens by >2.5-log10 CFU/g in thigh tissues compared to each monotherapy.



2006 ◽  
Vol 72 (3) ◽  
pp. 1900-1909 ◽  
Author(s):  
Martina Bielaszewska ◽  
Rita Prager ◽  
Wenlan Zhang ◽  
Alexander W. Friedrich ◽  
Alexander Mellmann ◽  
...  

ABSTRACT Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:NM (nonmotile) is a unique clone that causes outbreaks of hemorrhagic colitis and hemolytic-uremic syndrome. In well-defined clusters of cases, we have observed significant variability in pulsed-field gel electrophoresis (PFGE) patterns which could indicate coinfection by different strains. An analysis of randomly selected progeny colonies of an outbreak strain after subcultivation demonstrated that they displayed either the cognate PFGE outbreak pattern or one of four additional patterns and were <89% similar. These profound alterations were associated with changes in the genomic position of one of two Shiga toxin 2-encoding genes (stx 2) in the outbreak strain or with the loss of this gene. The two stx 2 alleles in the outbreak strain were identical but were flanked with phage-related sequences with only 77% sequence identity. Neither of these phages produced plaques, but one lysogenized E. coli K-12 and integrated in yecE in the lysogens and the wild-type strain. The presence of two stx 2 genes which correlated with increased production of Stx2 in vitro but not with the clinical outcome of infection was also found in 14 (21%) of 67 SF EHEC O157:NM isolates from sporadic cases of human disease. The variability of PFGE patterns for the progeny of a single colony must be considered when interpreting PFGE patterns in SF EHEC O157-associated outbreaks.



2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Sun Hee Moon ◽  
Yihong Kaufmann ◽  
En Huang

ABSTRACT Polymyxin resistance mediated by the mcr-1 gene threatens the last-resort antibiotics. Linear lipopeptide paenipeptin analogues 1 and 15 disrupted the outer membrane of Gram-negative pathogens and potentiated clarithromycin and rifampin against mcr-1-positive Escherichia coli from the FDA-CDC Antimicrobial Resistance Isolate Bank. In the presence of paenipeptin, clarithromycin and rifampin resulted in over 3-log reduction of E. coli in vitro. Moreover, paenipeptin-antibiotic combinations significantly reduced E. coli in a murine thigh infection model.



2016 ◽  
Vol 82 (7) ◽  
pp. 2177-2186 ◽  
Author(s):  
Ludivine Bonanno ◽  
Marie-Agnès Petit ◽  
Estelle Loukiadis ◽  
Valérie Michel ◽  
Frédéric Auvray

ABSTRACTShiga toxin (Stx)-producingEscherichia coli(STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by thestxgene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and theirstx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based onstxgene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate ofin vitroinduction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity ofstx-negativeE. coliO26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event.



2015 ◽  
Vol 81 (20) ◽  
pp. 7041-7047 ◽  
Author(s):  
Inga Eichhorn ◽  
Katrin Heidemanns ◽  
Torsten Semmler ◽  
Bianca Kinnemann ◽  
Alexander Mellmann ◽  
...  

ABSTRACTEnterohemorrhagicEscherichia coli(EHEC) is the causative agent of bloody diarrhea and extraintestinal sequelae in humans, most importantly hemolytic-uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). Besides the bacteriophage-encoded Shiga toxin gene (stx), EHEC harbors the locus of enterocyte effacement (LEE), which confers the ability to cause attaching and effacing lesions. Currently, the vast majority of EHEC infections are caused by strains belonging to five O serogroups (the “big five”), which, in addition to O157, the most important, comprise O26, O103, O111, and O145. We hypothesize that these four non-O157 EHEC serotypes differ in their phylogenies. To test this hypothesis, we used multilocus sequence typing (MLST) to analyze a large collection of 250 isolates of these four O serogroups, which were isolated from diseased as well as healthy humans and cattle between 1952 and 2009. The majority of the EHEC isolates of O serogroups O26 and O111 clustered into one sequence type complex, STC29. Isolates of O103 clustered mainly in STC20, and most isolates of O145 were found within STC32. In addition to these EHEC strains, STC29 also includedstx-negativeE. colistrains, termed atypical enteropathogenicE. coli(aEPEC), yet another intestinal pathogenicE. coligroup. The finding that aEPEC and EHEC isolates of non-O157 O serogroups share the same phylogeny suggests an ongoing microevolutionary scenario in which the phage-encoded Shiga toxin genestxis transferred between aEPEC and EHEC. As a consequence, aEPEC strains of STC29 can be regarded as post- or pre-EHEC isolates. Therefore, STC29 incorporates phylogenetic information useful for unraveling the evolution of EHEC.



mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Christopher W. Lennon ◽  
Kimberly C. Lemmer ◽  
Jessica L. Irons ◽  
Max I. Sellman ◽  
Timothy J. Donohue ◽  
...  

ABSTRACTDksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the “stringent response” to nutrient starvation in the gammaproteobacteriumEscherichia coliand for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly relatedRhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length toE. coliDksA but lacks the Zn finger motif of theE. coliDksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of anE. colistrain lacking thedksAgene and modulates transcriptionin vitrowithE. coliRNA polymerase (RNAP) similarly toE. coliDksA. RSP2654 reduces RNAP-promoter complex stabilityin vitrowith RNAPs fromE. coliorR. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity toE. coliDksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsphas distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp.IMPORTANCEThe role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis inRhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.



2005 ◽  
Vol 49 (6) ◽  
pp. 2343-2351 ◽  
Author(s):  
Patricia Komp Lindgren ◽  
Linda L. Marcusson ◽  
Dorthe Sandvang ◽  
Niels Frimodt-Møller ◽  
Diarmaid Hughes

ABSTRACT Resistance to fluoroquinolones in urinary tract infection (UTIs) caused by Escherichia coli is associated with multiple mutations, typically those that alter DNA gyrase and DNA topoisomerase IV and those that regulate AcrAB-TolC-mediated efflux. We asked whether a fitness cost is associated with the accumulation of these multiple mutations. Mutants of the susceptible E. coli UTI isolate Nu14 were selected through three to five successive steps with norfloxacin. Each selection was performed with the MIC of the selected strain. After each selection the MIC was measured; and the regions of gyrA, gyrB, parC, and parE, previously associated with resistance mutations, and all of marOR and acrR were sequenced. The first selection step yielded mutations in gyrA, gyrB, and marOR. Subsequent selection steps yielded mutations in gyrA, parE, and marOR but not in gyrB, parC, or acrR. Resistance-associated mutations were identified in almost all isolates after selection steps 1 and 2 but in less than 50% of isolates after subsequent selection steps. Selected strains were competed in vitro, in urine, and in a mouse UTI infection model against the starting strain, Nu14. First-step mutations were not associated with significant fitness costs. However, the accumulation of three or more resistance-associated mutations was usually associated with a large reduction in biological fitness, both in vitro and in vivo. Interestingly, in some lineages a partial restoration of fitness was associated with the accumulation of additional mutations in late selection steps. We suggest that the relative biological costs of multiple mutations may influence the evolution of E. coli strains that develop resistance to fluoroquinolones.



Sign in / Sign up

Export Citation Format

Share Document