scholarly journals Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog

2014 ◽  
Vol 80 (23) ◽  
pp. 7176-7185 ◽  
Author(s):  
Luisa F. Cruz ◽  
Jennifer K. Parker ◽  
Paul A. Cobine ◽  
Leonardo De La Fuente

ABSTRACTThe plant-pathogenic bacteriumXylella fastidiosais restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility ofX. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified threepilY1homologs inX. fastidiosa(PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in thepilY1-1611 mutant. Ca does not modulate the expression of any of theX. fastidiosaPilY1 homologs, although it increases the expression of the retraction ATPasepilTduring active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provideX. fastidiosawith an adaptive advantage in environments with high Ca concentrations, such as xylem sap.

2011 ◽  
Vol 78 (5) ◽  
pp. 1321-1331 ◽  
Author(s):  
Luisa F. Cruz ◽  
Paul A. Cobine ◽  
Leonardo De La Fuente

ABSTRACTXylella fastidiosais a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production ofX. fastidiosabiofilm and movement was analyzed underin vitroconditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures.


2018 ◽  
Vol 84 (18) ◽  
Author(s):  
Prem P. Kandel ◽  
Hongyu Chen ◽  
Leonardo De La Fuente

ABSTRACT Twitching motility is one of the major virulence factors of the plant-pathogenic bacterium Xylella fastidiosa, and it is mediated by type IV pili (TFP) that are present at one of the cell poles. Genome analysis of X. fastidiosa showed the presence of at least four paralogs of the gene pilA, which encodes the TFP major pilin subunit. However, whether all of these paralogs have a functional role in TFP structure and function is unknown. Here, using a short and reliable protocol based on overlap extension PCR and natural transformation, deletion mutants of two pilA paralogs (pilA1 PD1924 and pilA2 PD1926) were generated in two X. fastidiosa subsp. fastidiosa strains, WM1-1 and TemeculaL, followed by assessment of twitching motility and biofilm formation. Deletion of pilA2 caused loss of twitching motility, whereas deletion of pilA1 did not influence twitching motility but caused hyperpiliation and extended distribution of TFP along the sides of the cell. Loss of twitching motility due to pilA2 deletion was restored when a wild-type copy of the pilA2 gene was added at a neutral site in the genome of mutants in both wild-type backgrounds. This study demonstrates that PCR templates generated by overlap extension PCR can be successfully used to rapidly generate gene knockouts and perform genetic complementation in X. fastidiosa, and that twitching motility in X. fastidiosa is controlled by regulating the transcription of the major pilin subunit, pilA2. IMPORTANCE The bacterial plant pathogen Xylella fastidiosa causes incurable diseases in multiple hosts, including grape, citrus, and blueberry. Historically restricted to the Americas, it was recently found to cause epidemics in olives in Italy and to infect other hosts in Europe and Asia. In this study, we report a short protocol to create deletion and complemented mutants using fusion PCR and natural transformation. We also determined the distinct function of two pilin paralogs, the main structural component of TFP involved in twitching motility, which allows this bacterium to move inside the xylem vessels against the flow. One of the paralogs is needed for twitching movement, whereas the other does not have an effect on motility but influences the number and position of TFP. Since twitching motility is fundamental for the virulence of this xylem-limited bacterium, this study contributes to the understanding of the regulation of virulence by this pathogen.


2005 ◽  
Vol 187 (16) ◽  
pp. 5560-5567 ◽  
Author(s):  
Yizhi Meng ◽  
Yaxin Li ◽  
Cheryl D. Galvani ◽  
Guixia Hao ◽  
James N. Turner ◽  
...  

ABSTRACT Xylella fastidiosa is a xylem-limited nonflagellated bacterium that causes economically important diseases of plants by developing biofilms that block xylem sap flow. How the bacterium is translocated downward in the host plant's vascular system against the direction of the transpiration stream has long been a puzzling phenomenon. Using microfabricated chambers designed to mimic some of the features of xylem vessels, we discovered that X. fastidiosa migrates via type IV-pilus-mediated twitching motility at speeds up to 5 μm min−1 against a rapidly flowing medium (20,000 μm min−1). Electron microscopy revealed that there are two length classes of pili, long type IV pili (1.0 to 5.8 μm) and short type I pili (0.4 to 1.0 μm). We further demonstrated that two knockout mutants (pilB and pilQ mutants) that are deficient in type IV pili do not twitch and are inhibited from colonizing upstream vascular regions in planta. In addition, mutants with insertions in pilB or pilQ (possessing type I pili only) express enhanced biofilm formation, whereas a mutant with an insertion in fimA (possessing only type IV pili) is biofilm deficient.


Microbiology ◽  
2021 ◽  
Vol 167 (10) ◽  
Author(s):  
Lindsey P. Burbank ◽  
M. Caroline Roper

Xylella fastidiosa is a vector-borne plant vascular pathogen that has caused devastating disease outbreaks in diverse agricultural crops worldwide. A major global quarantine pathogen, X. fastidiosa can infect hundreds of plant species and can be transmitted by many different xylem sap-feeding insects. Several decades of research have revealed a complex lifestyle dependent on adaptation to the xylem and insect environments and interactions with host plant tissues.


2001 ◽  
Vol 183 (16) ◽  
pp. 4694-4701 ◽  
Author(s):  
Stefan Graupner ◽  
Nicole Weger ◽  
Monika Sohni ◽  
Wilfried Wackernagel

ABSTRACT The ubiquitous species Pseudomonas stutzeri has type IV pili, and these are essential for the natural transformation of the cells. An absolute transformation-deficient mutant obtained after transposon mutagenesis had an insertion in a gene which was termedpilT. The deduced amino acid sequence has identity with PilT of Pseudomonas aeruginosa (94%), Neisseria gonorrhoeae (67%), and other gram-negative species and it contains a nucleotide-binding motif. The mutant was hyperpiliated but defective for further pilus-associated properties, such as twitching motility and plating of pilus-specific phage PO4. [3H]thymidine-labeled DNA was bound by the mutant but not taken up. Downstream of pilT a gene, termedpilU, coding for a putative protein with 88% amino acid identity with PilU of P. aeruginosa was identified. Insertional inactivation did not affect piliation, twitching motility, or PO4 infection but reduced transformation to about 10%. The defect was fully complemented by PilU of nontransformable P. aeruginosa. When thepilAI gene (coding for the type IV pilus prepilin) was manipulated to code for a protein in which the six C-terminal amino acids were replaced by six histidine residues and then expressed from a plasmid, it gave a nonpiliated and twitching motility-defective phenotype in pilAI::Gmr cells but allowed transformability. Moreover, the mutant allele suppressed the absolute transformation deficiency caused by the pilT mutation. Considering the hypothesized role of pilT + in pilus retraction and the presumed requirement of retraction for DNA uptake, it is proposed that the pilT-independent transformation is promoted by PilA mutant protein either as single molecules or as minimal pilin assembly structures in the periplasm which may resemble depolymerized pili and that these cause the outer membrane pores to open for DNA entry.


2017 ◽  
Vol 30 (11) ◽  
pp. 896-905 ◽  
Author(s):  
Hongyu Chen ◽  
Prem P. Kandel ◽  
Luisa F. Cruz ◽  
Paul A. Cobine ◽  
Leonardo De La Fuente

MopB is a major outer membrane protein (OMP) in Xylella fastidiosa, a bacterial plant pathogen that causes losses on many economically important crops. Based on in silico analysis, the uncharacterized MopB protein of X. fastidiosa contains a β-barrel structure with an OmpA-like domain and a predicted calcium-binding motif. Here, MopB function was studied by mutational analysis taking advantage of the natural competence of X. fastidiosa. Mutants of mopB were constructed in two different X. fastidiosa strains, the type strain Temecula and the more virulent WM1-1. Deletion of the mopB gene impaired cell-to-cell aggregation, surface attachment, and biofilm formation in both strains. Interestingly, mopB deletion completely abolished twitching motility. Electron microscopy of the bacterial cell surface revealed that mopB deletion eliminated type IV and type I pili formation, potentially caused by destabilization of the outer membrane. Both mopB mutants showed reduced virulence using tobacco (Nicotiana tabacum) as a host under greenhouse conditions. These results suggest that MopB has pleiotropic functions in biofilm formation and twitching motility and is important for virulence of X. fastidiosa.


Microbiology ◽  
2007 ◽  
Vol 153 (3) ◽  
pp. 719-726 ◽  
Author(s):  
Yaxin. Li ◽  
Guixia. Hao ◽  
Cheryl D. Galvani ◽  
Yizhi Meng ◽  
Leonardo De La. Fuente ◽  
...  

2015 ◽  
Vol 197 (13) ◽  
pp. 2229-2238 ◽  
Author(s):  
Tiffany L. Leighton ◽  
Neha Dayalani ◽  
Liliana M. Sampaleanu ◽  
P. Lynne Howell ◽  
Lori L. Burrows

ABSTRACTType IV pili (T4P) are dynamic protein filaments that mediate bacterial adhesion, biofilm formation, and twitching motility. The highly conserved PilMNOP proteins form an inner membrane alignment subcomplex required for function of the T4P system, though their exact roles are unclear. Three potential interaction interfaces for PilNO were identified: core-core, coiled coils (CC), and the transmembrane segments (TMSs). A high-confidence PilNO heterodimer model was used to select key residues for mutation, and the resulting effects on protein-protein interactions were examined both in a bacterial two-hybrid (BTH) system and in their nativePseudomonas aeruginosacontext. Mutations in the oppositely charged CC regions or the TMS disrupted PilNO heterodimer formation in the BTH assay, while up to six combined mutations in the core failed to disrupt the interaction. When the mutations were introduced into theP. aeruginosachromosome at thepilNorpilOlocus, specific changes at each of the three interfaces—including core mutations that failed to disrupt interactions in the BTH system—abrogated surface piliation and/or impaired twitching motility. Unexpectedly, specific CC mutants were hyperpiliated but nonmotile, a hallmark of pilus retraction defects. These data suggest that PilNO participate in both the extension and retraction of T4P. Our findings support a model of multiple, precise interaction interfaces between PilNO; emphasize the importance of studying protein function in a minimally perturbed context and stoichiometry; and highlight potential target sites for development of small-molecule inhibitors of the T4P system.IMPORTANCEPseudomonas aeruginosais an opportunistic pathogen that uses type IV pili (T4P) for host attachment. The T4P machinery is composed of four cell envelope-spanning subcomplexes. PilN and PilO heterodimers are part of the alignment subcomplex and essential for T4P function. Three potential PilNO interaction interfaces (the core-core, coiled-coil, and transmembrane segment interfaces) were probed using site-directed mutagenesis followed by functional assays in anEscherichia colitwo-hybrid system and inP. aeruginosa. Several mutations blocked T4P assembly and/or motility, including two that revealed a novel role for PilNO in pilus retraction, while other mutations affected extension dynamics. These critical PilNO interaction interfaces represent novel targets for small-molecule inhibitors with the potential to disrupt T4P function.


2013 ◽  
Vol 80 (2) ◽  
pp. 644-652 ◽  
Author(s):  
Ralf Salzer ◽  
Friederike Joos ◽  
Beate Averhoff

ABSTRACTNatural transformation has a large impact on lateral gene flow and has contributed significantly to the ecological diversification and adaptation of bacterial species.Thermus thermophilusHB27 has emerged as the leading model organism for studies of DNA transporters in thermophilic bacteria. Recently, we identified a zinc-binding polymerization nucleoside triphosphatase (NTPase), PilF, which is essential for the transport of DNA through the outer membrane. Here, we present genetic evidence that PilF is also essential for the biogenesis of pili. One of the most challenging questions was whetherT. thermophilushas any depolymerization NTPase acting as a counterplayer of PilF. We identified two depolymerization NTPases, PilT1 (TTC1621) and PilT2 (TTC1415), both of which are required for type IV pilus (T4P)-mediated twitching motility and adhesion but dispensable for natural transformation. This suggests that T4P dynamics are not required for natural transformation. The latter finding is consistent with our suggestion that inT. thermophilus, T4P and natural transformation are linked but distinct systems.


2017 ◽  
Vol 83 (7) ◽  
Author(s):  
Yuan Chen ◽  
Jing Xia ◽  
Zhenhe Su ◽  
Gaoge Xu ◽  
Mark Gomelsky ◽  
...  

ABSTRACT Lysobacter enzymogenes is a ubiquitous soil gammaproteobacterium that produces a broad-spectrum antifungal antibiotic, known as heat-stable antifungal factor (HSAF). To increase HSAF production for use against fungal crop diseases, it is important to understand how HSAF synthesis is regulated. To gain insights into transcriptional regulation of the HSAF synthesis gene cluster, we generated a library with deletion mutations in the genes predicted to encode response regulators of the two-component signaling systems in L. enzymogenes strain OH11. By quantifying HSAF production levels in the 45 constructed mutants, we identified two strains that produced significantly smaller amounts of HSAF. One of the mutations affected a gene encoding a conserved bacterial response regulator, PilR, which is commonly associated with type IV pilus synthesis. We determined that L. enzymogenes PilR regulates pilus synthesis and twitching motility via a traditional pathway, by binding to the pilA promoter and upregulating pilA expression. Regulation of HSAF production by PilR was found to be independent of pilus formation. We discovered that the pilR mutant contained significantly higher intracellular levels of the second messenger cyclic di-GMP (c-di-GMP) and that this was the inhibitory signal for HSAF production. Therefore, the type IV pilus regulator PilR in L. enzymogenes activates twitching motility while downregulating antibiotic HSAF production by increasing intracellular c-di-GMP levels. This study identifies a new role of a common pilus regulator in proteobacteria and provides guidance for increasing antifungal antibiotic production in L. enzymogenes. IMPORTANCE PilR is a widespread response regulator of the two-component system known for regulating type IV pilus synthesis in proteobacteria. Here we report that, in the soil bacterium Lysobacter enzymogenes, PilR regulates pilus synthesis and twitching motility, as expected. Unexpectedly, PilR was also found to control intracellular levels of the second messenger c-di-GMP, which in turn inhibits production of the antifungal antibiotic HSAF. The coordinated production of type IV pili and antifungal antibiotics has not been observed previously.


Sign in / Sign up

Export Citation Format

Share Document