scholarly journals Genome Signatures of Escherichia coli O157:H7 Isolates from the Bovine Host Reservoir

2011 ◽  
Vol 77 (9) ◽  
pp. 2916-2925 ◽  
Author(s):  
Mark Eppinger ◽  
Mark K. Mammel ◽  
Joseph E. LeClerc ◽  
Jacques Ravel ◽  
Thomas A. Cebula

ABSTRACTCattle comprise a main reservoir of Shiga toxin-producingEscherichia coliO157:H7 (STEC). The significant differences in host prevalence, transmissibility, and virulence phenotypes among strains from bovine and human sources are of major interest to the public health community and livestock industry. Genomic analysis revealed divergence into three lineages: lineage I and lineage I/II strains are commonly associated with human disease, while lineage II strains are overrepresented in the asymptomatic bovine host reservoir. Growing evidence suggests that genotypic differences between these lineages, such as polymorphisms in Shiga toxin subtypes and synergistically acting virulence factors, are correlated with phenotypic differences in virulence, host ecology, and epidemiology. To assess the genomic plasticity on a genome-wide scale, we have sequenced the whole genome of strain EC869, a bovine-associatedE. coliO157:H7 isolate. Comparative phylogenomic analysis of this key isolate enabled us to place accurately bovine lineage II strains within the genetically homogenousE. coliO157:H7 clade. Identification of polymorphic loci that are anchored both in the chromosomal backbone and horizontally acquired regions allowed us to associate bovine genotypes with altered virulence phenotypes and host prevalence. This study catalogued numerous novel lineage II-specific genome signatures, some of which appear to be associated intimately with the altered pathogenic potential and niche adaptation within the bovine rumen. The presented extended list of polymorphic markers is valuable in the development of a robust typing system critical for forensic, diagnostic, and epidemiological studies of this emerging human pathogen.

2019 ◽  
Vol 8 (32) ◽  
Author(s):  
Yen-Te Liao ◽  
Yujie Zhang ◽  
Alexandra Salvador ◽  
Vivian C. H. Wu

Escherichia phage vB_EcoM-Sa45lw, a new member of the T4-like phages, was isolated from surface water in a produce-growing area. The phage, containing double-stranded DNA with a genome size of 167,353 bp and 282 predicted open reading frames (ORFs), is able to infect generic Escherichia coli and Shiga toxin-producing E. coli O45 and O157 strains.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Suman Pradhan ◽  
Alison Ann Weiss

ABSTRACT Escherichia coli strain Nissle has been used as a probiotic and therapeutic agent for over a century. Reports suggest that Nissle protects mice from enterohemorrhagic E. coli (EHEC) O157:H7 strains; however, mice are not very susceptible to O157:H7 and are not accurate models for O157:H7 infection in humans. Also, Nissle is closely related to uropathogenic E. coli (UPEC) strain CFT073, suggesting that Nissle could have pathogenic potential. To assess the safety of and protection conferred by Nissle, we modeled infection in stem cell-derived human intestinal organoids (HIOs). HIOs replicate the structure and function of human intestinal tissue. HIOs have a lumen enclosed by a single cell layer of differentiated epithelium, which is surrounded by a diffuse mesenchymal layer. An epithelial barrier which excludes the luminal contents from the surrounding cell layers and medium develops. Nissle appeared to be nonpathogenic; 103 CFU were microinjected into the lumen, and after 3 days, 107 CFU were recovered and the epithelial barrier remained intact. In contrast, microinjected EHEC and UPEC bacteria destroyed the epithelial barrier. To assess the protection conferred by Nissle, HIOs microinjected with Nissle were challenged after 18 to 24 h with EHEC or UPEC. Preincubation with Nissle prevented the loss of the epithelial barrier function, the loss of E-cadherin expression, the increased production of reactive oxygen species, and apoptosis. Nissle did not replicate in the HIO coculture, while the pathogenic strains did replicate, suggesting that Nissle conferred protection via activation of host defenses and not by eliminating competing strains. Nissle was shown to be susceptible to some Shiga toxin phage, and Nissle lysogens could produce Shiga toxin. IMPORTANCE Probiotic, or beneficial, bacteria, such as E. coli Nissle, hold promise for the treatment of human disease. More study is needed to fully realize the potential of probiotics. Safety and efficacy studies are critically important; however, mice are poor models for many human intestinal diseases. We used stem cell-derived human intestinal organoid tissues to evaluate the safety of Nissle and its ability to protect from pathogenic E. coli bacteria. Nissle was found to be safe. Human intestinal tissues were not harmed by the Nissle bacteria introduced into the digestive tract. In contrast, pathogenic E. coli bacteria destroyed the intestinal tissues, and importantly, Nissle conferred protection from the pathogenic E. coli bacteria. Nissle did not kill the pathogenic E. coli bacteria, and protection likely occurred via the activation of human defenses. Human intestinal tissues provide a powerful way to study complex host-microbe interactions.


2013 ◽  
Vol 79 (8) ◽  
pp. 2731-2740 ◽  
Author(s):  
Elisabeth Hauser ◽  
Alexander Mellmann ◽  
Torsten Semmler ◽  
Helen Stoeber ◽  
Lothar H. Wieler ◽  
...  

ABSTRACTSeventy-five food-associated Shiga toxin-producingEscherichia coli(STEC) strains were analyzed by molecular and phylogenetic methods to describe their pathogenic potential. The presence of the locus of proteolysis activity (LPA), the chromosomal pathogenicity island (PAI) PAI ICL3, and the autotransporter-encoding genesabAwas examined by PCR. Furthermore, the occupation of the chromosomal integration sites of the locus of enterocyte effacement (LEE),selC,pheU, andpheV, as well as the Stx phage integration sitesyehV,yecE,wrbA,z2577, andssrA, was analyzed. Moreover, the antibiotic resistance phenotypes of all STEC strains were determined. Multilocus sequence typing (MLST) was performed, and sequence types (STs) and sequence type complexes (STCs) were compared with those of 42 hemolytic-uremic syndrome (HUS)-associated enterohemorrhagicE. coli(HUSEC) strains. Besides 59 STs and 4 STCs, three larger clusters were defined in this strain collection. Clusters A and C consist mostly of highly pathogeniceae-positive HUSEC strains and some related food-borne STEC strains. A member of a new O26 HUS-associated clone and the 2011 outbreak strainE. coliO104:H4 were found in cluster A. Cluster B comprises onlyeae-negative food-borne STEC strains as well as mainlyeae-negative HUSEC strains. Although food-borne strains of cluster B were not clearly associated with disease, serotypes of important pathogens, such as O91:H21 and O113:H21, were in this cluster and closely related to the food-borne strains. Clonal analysis demonstrated eight closely related genetic groups of food-borne STEC and HUSEC strains that shared the same ST and were similar in their virulence gene composition. These groups should be considered with respect to their potential for human infection.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Andreas Bauwens ◽  
Lisa Kunsmann ◽  
Helge Karch ◽  
Alexander Mellmann ◽  
Martina Bielaszewska

ABSTRACT Ciprofloxacin, meropenem, fosfomycin, and polymyxin B strongly increase production of outer membrane vesicles (OMVs) in Escherichia coli O104:H4 and O157:H7. Ciprofloxacin also upregulates OMV-associated Shiga toxin 2a, the major virulence factor of these pathogens, whereas the other antibiotics increase OMV production without the toxin. These two effects might worsen the clinical outcome of infections caused by Shiga toxin-producing E. coli. Our data support the existing recommendations to avoid antibiotics for treatment of these infections.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Laura Heinisch ◽  
Katharina Zoric ◽  
Maike Krause ◽  
Herbert Schmidt

ABSTRACT Certain foodborne Shiga toxin-producing Escherichia coli (STEC) strains carry genes encoding the subtilase cytotoxin (SubAB). Although the mode of action of SubAB is under intensive investigation, information about the regulation of subAB gene expression is currently not available. In this study, we investigated the regulation of the chromosomal subAB1 gene in laboratory E. coli strain DH5α and STEC O113:H21 strain TS18/08 using a luciferase reporter gene assay. Special emphasis was given to the role of the global regulatory protein genes hfq and hns in subAB1 promoter activity. Subsequently, quantitative real-time PCR was performed to analyze the expression of Shiga toxin 2a (Stx2a), SubAB1, and cytolethal distending toxin V (Cdt-V) genes in STEC strain TS18/08 and its isogenic hfq and hns deletion mutants. The deletion of hfq led to a significant increase of up to 2-fold in subAB1 expression, especially in the late growth phase, in both strains. However, deletion of hns showed different effects on the promoter activity during the early and late exponential growth phases in both strains. Furthermore, upregulation of stx2a and cdt-V was demonstrated in hfq and hns deletion mutants in TS18/08. These data showed that the expression of subAB1, stx2a, and cdt-V is integrated in the regulatory network of global regulators Hfq and H-NS in Escherichia coli. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) strains are responsible for outbreaks of foodborne diseases, such as hemorrhagic colitis and the hemolytic uremic syndrome. The pathogenicity of those strains can be attributed to, among other factors, the production of toxins. Recently, the subtilase cytotoxin was detected in locus of enterocyte effacement (LEE)-negative STEC, and it was confirmed that it contributes to the cytotoxicity of those STEC strains. Although the mode of action of SubAB1 is under intensive investigation, the regulation of gene expression is currently not known. The global regulatory proteins H-NS and Hfq have impact on many cellular processes and have been described to regulate virulence factors as well. Here, we investigate the role of hns and hfq in expression of subAB1 as well as stx2a and cdt-V in an E. coli laboratory strain as well as in wild-type STEC strain TS18/08.


2016 ◽  
Vol 82 (17) ◽  
pp. 5455-5464 ◽  
Author(s):  
Stefanie A. Barth ◽  
Christian Menge ◽  
Inga Eichhorn ◽  
Torsten Semmler ◽  
Lothar H. Wieler ◽  
...  

ABSTRACTShiga toxin-producingEscherichia coli(STEC) strains can colonize cattle for several months and may, thus, serve as gene reservoirs for the genesis of highly virulent zoonotic enterohemorrhagicE. coli(EHEC). Attempts to reduce the human risk for acquiring EHEC infections should include strategies to control such STEC strains persisting in cattle. We therefore aimed to identify genetic patterns associated with the STEC colonization type in the bovine host. We included 88 persistent colonizing STEC (STECper) (shedding for ≥4 months) and 74 sporadically colonizing STEC (STECspo) (shedding for ≤2 months) isolates from cattle and 16 bovine STEC isolates with unknown colonization types. Genoserotypes and multilocus sequence types (MLSTs) were determined, and the isolates were probed with a DNA microarray for virulence-associated genes (VAGs). All STECperisolates belonged to only four genoserotypes (O26:H11, O156:H25, O165:H25, O182:H25), which formed three genetic clusters (ST21/396/1705, ST300/688, ST119). In contrast, STECspoisolates were scattered among 28 genoserotypes and 30 MLSTs, with O157:H7 (ST11) and O6:H49 (ST1079) being the most prevalent. The microarray analysis identified 139 unique gene patterns that clustered with the genoserotypes and MLSTs of the strains. While the STECperisolates possessed heterogeneous phylogenetic backgrounds, the accessory genome clustered these isolates together, separating them from the STECspoisolates. Given the vast genetic heterogeneity of bovine STEC strains, defining the genetic patterns distinguishing STECperfrom STECspoisolates will facilitate the targeted design of new intervention strategies to counteract these zoonotic pathogens at the farm level.IMPORTANCERuminants, especially cattle, are sources of food-borne infections by Shiga toxin-producingEscherichia coli(STEC) in humans. Some STEC strains persist in cattle for longer periods of time, while others are detected only sporadically. Persisting strains can serve as gene reservoirs that supplyE. coliwith virulence factors, thereby generating new outbreak strains. Attempts to reduce the human risk for acquiring STEC infections should therefore include strategies to control such persisting STEC strains. By analyzing representative genes of their core and accessory genomes, we show that bovine STEC with a persistent colonization type emerged independently from sporadically colonizing isolates and evolved in parallel evolutionary branches. However, persistent colonizing strains share similar sets of accessory genes. Defining the genetic patterns that distinguish persistent from sporadically colonizing STEC isolates will facilitate the targeted design of new intervention strategies to counteract these zoonotic pathogens at the farm level.


2012 ◽  
Vol 78 (12) ◽  
pp. 4065-4073 ◽  
Author(s):  
Maite Muniesa ◽  
Jens A. Hammerl ◽  
Stefan Hertwig ◽  
Bernd Appel ◽  
Harald Brüssow

ABSTRACTIn 2011, Germany experienced the largest outbreak with a Shiga toxin-producingEscherichia coli(STEC) strain ever recorded. A series of environmental and trace-back and trace-forward investigations linked sprout consumption with the disease, but fecal-oral transmission was also documented. The genome sequences of the pathogen revealed a clonal outbreak with enteroaggregativeE. coli(EAEC). Some EAEC virulence factors are carried on the virulence plasmid pAA. From an unknown source, the epidemic strains acquired a lambdoid prophage carrying the gene for the Shiga toxin. The resulting strains therefore possess two different mobile elements, a phage and a plasmid, contributing essential virulence genes. Shiga toxin is released by decaying bacteria in the gut, migrates through the intestinal barrier, and is transported via the blood to target organs, like the kidney. In a mouse model, probiotic bifidobacteria interfered with transport of the toxin through the gut mucosa. Researchers explored bacteriophages, bacteriocins, and low-molecular-weight inhibitors against STEC. Randomized controlled clinical trials of enterohemorrhagicE. coli(EHEC)-associated hemolytic uremic syndrome (HUS) patients found none of the interventions superior to supportive therapy alone. Antibodies against one subtype of Shiga toxin protected pigs against fatal neurological infection, while treatment with a toxin receptor decoy showed no effect in a clinical trial. Likewise, a monoclonal antibody directed against a complement protein led to mixed results. Plasma exchange and IgG immunoadsoprtion ameliorated the condition in small uncontrolled trials. The epidemic O104:H4 strains were resistant to all penicillins and cephalosporins but susceptible to carbapenems, which were recommended for treatment.


2011 ◽  
Vol 78 (4) ◽  
pp. 1308-1309 ◽  
Author(s):  
Charlotte Valat ◽  
Marisa Haenni ◽  
Estelle Saras ◽  
Frédéric Auvray ◽  
Karine Forest ◽  
...  

ABSTRACTWe report the discovery of a CTX-M-15-producingEscherichia coli(STEC) of serogroup O111:H8, a major serotype responsible for human enterohemorrhagicEscherichia coli(EHEC) infections. In line with the recent CTX-M-15/O104:H4E. colioutbreak, these data may reflect an accelerating spread of resistance to expanded-spectrum cephalosporins within theE. colipopulation, including STEC isolates.


2014 ◽  
Vol 81 (2) ◽  
pp. 569-577 ◽  
Author(s):  
Lydia V. Rump ◽  
Narjol Gonzalez-Escalona ◽  
Wenting Ju ◽  
Fei Wang ◽  
Guojie Cao ◽  
...  

ABSTRACTEscherichia coliO157:H7 is, to date, the majorE. coliserotype causing food-borne human disease worldwide. Strains of O157 with other H antigens also have been recovered. We analyzed a collection of historic O157 strains (n= 400) isolated in the late 1980s to early 1990s in the United States. Strains were predominantly serotype O157:H7 (55%), and various O157:non-H7 (41%) serotypes were not previously reported regarding their pathogenic potential. Although lacking Shiga toxin (stx) andeaegenes, serotypes O157:H1, O157:H2, O157:H11, O157:H42, and O157:H43 carried several virulence factors (iha,terD, andhlyA) also found in virulent serotypeE. coliO157:H7. Pulsed-field gel electrophoresis (PFGE) showed the O157 serogroup was diverse, with strains with the same H type clustering together closely. Among non-H7 isolates, serotype O157:H43 was highly prevalent (65%) and carried important enterohemorrhagicE. coli(EHEC) virulence markers (iha,terD,hlyA, andespP). Isolates from two particular H types, H2 and H11, among the most commonly found non-O157 EHEC serotypes (O26:H11, O111:H11, O103:H2/H11, and O45:H2), unexpectedly clustered more closely with O157:H7 than other H types and carried several virulence genes. This suggests an early divergence of the O157 serogroup to clades with different pathogenic potentials. The appearance of important EHEC virulence markers in closely related H types suggests their virulence potential and suggests further monitoring of those serotypes not implicated in severe illness thus far.


Sign in / Sign up

Export Citation Format

Share Document