Phylogenetic and Molecular Analysis of Food-Borne Shiga Toxin-Producing Escherichia coli
ABSTRACTSeventy-five food-associated Shiga toxin-producingEscherichia coli(STEC) strains were analyzed by molecular and phylogenetic methods to describe their pathogenic potential. The presence of the locus of proteolysis activity (LPA), the chromosomal pathogenicity island (PAI) PAI ICL3, and the autotransporter-encoding genesabAwas examined by PCR. Furthermore, the occupation of the chromosomal integration sites of the locus of enterocyte effacement (LEE),selC,pheU, andpheV, as well as the Stx phage integration sitesyehV,yecE,wrbA,z2577, andssrA, was analyzed. Moreover, the antibiotic resistance phenotypes of all STEC strains were determined. Multilocus sequence typing (MLST) was performed, and sequence types (STs) and sequence type complexes (STCs) were compared with those of 42 hemolytic-uremic syndrome (HUS)-associated enterohemorrhagicE. coli(HUSEC) strains. Besides 59 STs and 4 STCs, three larger clusters were defined in this strain collection. Clusters A and C consist mostly of highly pathogeniceae-positive HUSEC strains and some related food-borne STEC strains. A member of a new O26 HUS-associated clone and the 2011 outbreak strainE. coliO104:H4 were found in cluster A. Cluster B comprises onlyeae-negative food-borne STEC strains as well as mainlyeae-negative HUSEC strains. Although food-borne strains of cluster B were not clearly associated with disease, serotypes of important pathogens, such as O91:H21 and O113:H21, were in this cluster and closely related to the food-borne strains. Clonal analysis demonstrated eight closely related genetic groups of food-borne STEC and HUSEC strains that shared the same ST and were similar in their virulence gene composition. These groups should be considered with respect to their potential for human infection.