scholarly journals Application of Metagenomic Sequencing to Food Safety: Detection of Shiga Toxin-Producing Escherichia coli on Fresh Bagged Spinach

2015 ◽  
Vol 81 (23) ◽  
pp. 8183-8191 ◽  
Author(s):  
Susan R. Leonard ◽  
Mark K. Mammel ◽  
David W. Lacher ◽  
Christopher A. Elkins

ABSTRACTCulture-independent diagnostics reduce the reliance on traditional (and slower) culture-based methodologies. Here we capitalize on advances in next-generation sequencing (NGS) to apply this approach to food pathogen detection utilizing NGS as an analytical tool. In this study, spiking spinach with Shiga toxin-producingEscherichia coli(STEC) following an established FDA culture-based protocol was used in conjunction with shotgun metagenomic sequencing to determine the limits of detection, sensitivity, and specificity levels and to obtain information on the microbiology of the protocol. We show that an expected level of contamination (∼10 CFU/100 g) could be adequately detected (including key virulence determinants and strain-level specificity) within 8 h of enrichment at a sequencing depth of 10,000,000 reads. We also rationalize the relative benefit of static versus shaking culture conditions and the addition of selected antimicrobial agents, thereby validating the long-standing culture-based parameters behind such protocols. Moreover, the shotgun metagenomic approach was informative regarding the dynamics of microbial communities during the enrichment process, including initial surveys of the microbial loads associated with bagged spinach; the microbes found included key genera such asPseudomonas,Pantoea, andExiguobacterium. Collectively, our metagenomic study highlights and considers various parameters required for transitioning to such sequencing-based diagnostics for food safety and the potential to develop better enrichment processes in a high-throughput manner not previously possible. Future studies will investigate new species-specific DNA signature target regimens, rational design of medium components in concert with judicious use of additives, such as antibiotics, and alterations in the sample processing protocol to enhance detection.

2015 ◽  
Vol 82 (4) ◽  
pp. 1090-1101 ◽  
Author(s):  
Michelle Qiu Carter ◽  
Beatriz Quinones ◽  
Xiaohua He ◽  
Wayne Zhong ◽  
Jacqueline W. Louie ◽  
...  

ABSTRACTShiga toxin-producingEscherichia coli(STEC) serotype O145 is one of the major non-O157 serotypes associated with severe human disease. Here we examined the genetic diversity, population structure, virulence potential, and antimicrobial resistance profiles of environmental O145 strains recovered from a major produce production region in California. Multilocus sequence typing analyses revealed that sequence type 78 (ST-78), a common ST in clinical strains, was the predominant genotype among the environmental strains. Similarly, all California environmental strains belonged to H28, a common H serotype in clinical strains. Although most environmental strains carried an intactfliCgene, only one strain retained swimming motility. Diversestxsubtypes were identified, includingstx1a,stx2a,stx2c, andstx2e. Although no correlation was detected between thestxgenotype and Stx1 production, high Stx2 production was detected mainly in strains carryingstx2aonly and was correlated positively with the cytotoxicity of Shiga toxin. All environmental strains were capable of producing enterohemolysin, whereas only 10 strains were positive for anaerobic hemolytic activity. Multidrug resistance appeared to be common, as nearly half of the tested O145 strains displayed resistance to at least two different classes of antibiotics. The core virulence determinants of enterohemorrhagicE. coliwere conserved in the environmental STEC O145 strains; however, there was large variation in the expression of virulence traits among the strains that were highly related genotypically, implying a trend of clonal divergence. Several cattle isolates exhibited key virulence traits comparable to those of the STEC O145 outbreak strains, emphasizing the emergence of hypervirulent strains in agricultural environments.


2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Silje N. Ramstad ◽  
Lin T. Brandal ◽  
Arne M. Taxt ◽  
Yngvild Wasteson ◽  
Jørgen V. Bjørnholt ◽  
...  

Introduction. Shiga toxin-producing Escherichia coli (STEC) can cause severe to fatal disease in humans. Antimicrobial treatment is sometimes necessary, but contraindicated due to undesirable clinical outcome. However, recent studies have shown promising outcomes following antimicrobial treatment. Before the establishment of a possible antimicrobial treatment strategy for STEC infections, the prevalence of antimicrobial resistance in STEC needs to be determined. Gap Statement. The resistance status of Norwegian clinical STEC is not known and should be assessed. Aim. We aim to characterize genotypic antimicrobial resistance determinants in clinical STEC in Norway, and determine the prevalence of genotypic resistance in order to inform possible antimicrobial treatment options for STEC infections. Methodology. We included all clinical STEC submitted to the Norwegian Reference Laboratory from March 2018 to April 2020. All samples were whole-genome sequenced and screened for genotypic antimicrobial resistance,virulence determinants and plasmid incompatibility groups. We performed phylogenetic clustering of STEC by core-genome multi-locus sequence typing, and statistical association analyses between isolate characteristics and genotypic resistance. Results. A total of 459 STEC were analysed. For 385 (83.9 %) STEC we did not identify any antimicrobial resistance determinants. Seventy-four STEC (16.1 %) harboured antimicrobial resistance determinants against one or more antimicrobial classes. The most frequent genotypic resistance was identified against aminoglycosides (10.5 %). Thirty-nine STEC (8.5 %) had a multi-drug resistance (MDR) genotype. Genotypic resistance was more prevalent in non-O157 than O157 STEC (P=0.02). A positive association was seen between genotypic resistance and the low-virulent STEC O117:H7 phylogenetic cluster (no. 14) (P<0.001). Genotypic resistance was not significantly associated to high-virulent STEC. STEC O146:H28 and isolates harbouring the plasmid replicon type IncQ1 were positively associated with MDR. Conclusion. The overall prevalence of genotypic resistance in clinical STEC in Norway is low (16.1 %). Genotypic resistance is more prevalent in non-O157 strains compared to O157 strains, and not significantly associated to high-virulent STEC. Resistance to antimicrobials suggested for treatment, especially azithromycin is low and may present an empiric treatment alternative for severe STEC infections.


2012 ◽  
Vol 78 (13) ◽  
pp. 4724-4731 ◽  
Author(s):  
Glen E. Mellor ◽  
Eby M. Sim ◽  
Robert S. Barlow ◽  
Beatriz A. D'Astek ◽  
Lucia Galli ◽  
...  

ABSTRACTShiga toxigenicEscherichia coliO157 is the leading cause of hemolytic uremic syndrome (HUS) worldwide. The frequencies ofstxgenotypes and the incidences of O157-related illness and HUS vary significantly between Argentina and Australia. Locus-specific polymorphism analysis revealed that lineage I/II (LI/II)E. coliO157 isolates were most prevalent in Argentina (90%) and Australia (88%). Argentinean LI/II isolates were shown to belong to clades 4 (28%) and 8 (72%), while Australian LI/II isolates were identified as clades 6 (15%), 7 (83%), and 8 (2%). Clade 8 was significantly associated with Shiga toxin bacteriophage insertion (SBI) typestx2(locus of insertion,argW) in Argentinean isolates (P< 0.0001). In Argentinean LI/II strains,stx2is carried by a prophage inserted atargW, whereas in Australian LI/II strains theargWlocus is occupied by the novelstx1prophage. In both Argentinean and Australian LI/II strains,stx2cis almost exclusively carried by a prophage inserted atsbcB. However, alternativeq933- orq21-related alleles were identified in the Australianstx2cprophage. Argentinean LI/II isolates were also distinguished from Australian isolates by the presence of the putative virulence determinant ECSP_3286 and the predominance of motile O157:H7 strains. Characteristics common to both Argentinean and Australian LI/II O157 strains included the presence of putative virulence determinants (ECSP_3620, ECSP_0242, ECSP_2687, ECSP_2870, and ECSP_2872) and the predominance of thetir255T allele. These data support further understanding of O157 phylogeny and may foster greater insight into the differential virulence of O157 lineages.


2012 ◽  
Vol 78 (17) ◽  
pp. 6341-6344 ◽  
Author(s):  
Rong Wang ◽  
Norasak Kalchayanand ◽  
James L. Bono ◽  
John W. Schmidt ◽  
Joseph M. Bosilevac

ABSTRACTEscherichia coliO26:H11 strains were able to outgrow O157:H7 companion strains in planktonic and biofilm phases and also to effectively compete with precolonized O157:H7 cells to establish themselves in mixed biofilms.E. coliO157:H7 strains were unable to displace preformed O26:H11 biofilms. Therefore,E. coliO26:H11 remains a potential risk in food safety.


2016 ◽  
Vol 82 (21) ◽  
pp. 6367-6377 ◽  
Author(s):  
Sandra C. Lorenz ◽  
Steven R. Monday ◽  
Maria Hoffmann ◽  
Markus Fischer ◽  
Julie A. Kase

ABSTRACTMost Shiga toxin-producingEscherichia coli(STEC) strains associated with severe disease, such as hemolytic-uremic syndrome (HUS), carry large enterohemolysin-encoding (ehxA) plasmids, e.g., pO157 and pO103, that contribute to STEC clinical manifestations. SixehxAsubtypes (A through F) exist that phylogenetically cluster intoeae-positive (B, C, F), a mix ofeae-positive (E) andeae-negative (A), and a third, more distantly related, cluster ofeae-negative (D) STEC strains. While subtype B, C, and F plasmids share a number of virulence traits that are distinct from those of subtype A, sequence data have not been available for subtype D and E plasmids. Here, we determined and compared the genetic composition of four subtype D and two subtype E plasmids to establish their evolutionary relatedness amongehxAsubtypes and define their potential role in pathogenicity. We found that subtype D strains carry one exceptionally large plasmid (>200 kbp) that carries a variety of virulence genes that are associated with enterotoxigenic and enterohemorrhagicE. coli, which, quite possibly, enables these strains to cause disease despite being food isolates. Our data offer further support for the hypothesis that this subtype D plasmid represents a novel virulence plasmid, sharing very few genetic features with other plasmids; we conclude that these plasmids have evolved from a different evolutionary lineage than the plasmids carrying the otherehxAsubtypes. In contrast, the 50-kbp plasmids of subtype E (pO145), although isolated from HUS outbreak strains, carried only few virulence-associated determinants, suggesting that the clinical presentation of subtype E strains is largely a result of chromosomally encoded virulence factors.IMPORTANCEBacterial plasmids are known to be key agents of change in microbial populations, promoting the dissemination of various traits, such as drug resistance and virulence. This study determined the genetic makeup of virulence plasmids from rare enterohemolysin subtype D and E Shiga toxin-producingE. colistrains. We demonstrated thatehxAsubtype D plasmids represent a novelE. colivirulence plasmid, and although subtype D plasmids were derived from nonclinical isolates, they encoded a variety of virulence determinants that are associated with pathogenicE. coli. In contrast, subtype E plasmids, isolated from strains recovered from severely ill patients, carry only a few virulence determinants. The results of this study reemphasize the plasticity and vast diversity amongE. coliplasmids. This work demonstrates that, althoughE. colistrains of certain serogroups may not be frequently associated with disease, they should not be underestimated in protecting human health and food safety.


2012 ◽  
Vol 78 (13) ◽  
pp. 4677-4682 ◽  
Author(s):  
Charlotte Valat ◽  
Frédéric Auvray ◽  
Karine Forest ◽  
Véronique Métayer ◽  
Emilie Gay ◽  
...  

ABSTRACTIn line with recent reports of extended-spectrum beta-lactamases (ESBLs) inEscherichia coliisolates of highly virulent serotypes, such as O104:H4, we investigated the distribution of phylogroups (A, B1, B2, D) and virulence factor (VF)-encoding genes in 204 ESBL-producingE. coliisolates from diarrheic cattle. ESBL genes, VFs, and phylogroups were identified by PCR and a commercial DNA array (Alere, France). ESBL genes belonged mostly to the CTX-M-1 (65.7%) and CTX-M-9 (27.0%) groups, whereas those of the CTX-M-2 and TEM groups were much less represented (3.9% and 3.4%, respectively). One ESBL isolate wasstx1andeaepositive and belonged to a major enterohemorrhagicE. coli(EHEC) serotype (O111:H8). Two other isolates wereeaepositive butstxnegative; one of these had serotype O26:H11. ESBL isolates belonged mainly to phylogroup A (55.4%) and, to lesser extents, to phylogroups D (25.5%) and B1 (15.6%), whereas B2 strains were quasi-absent (1/204). The number of VFs was significantly higher in phylogroup B1 than in phylogroups A (P= 0.04) and D (P= 0.02). Almost all of the VFs detected were found in CTX-M-1 isolates, whereas only 64.3% and 33.3% of them were found in CTX-M-9 and CTX-M-2 isolates, respectively. These results indicated that the widespread dissemination of theblaCTX-Mgenes within theE. colipopulation from cattle still spared the subpopulation of EHEC/Shiga-toxigenicE. coli(STEC) isolates. In contrast to other reports on non-ESBL-producing isolates from domestic animals, B1 was not the main phylogroup identified. However, B1 was found to be the most virulent phylogroup, suggesting host-specific distribution of virulence determinants among phylogenetic groups.


2011 ◽  
Vol 77 (23) ◽  
pp. 8295-8302 ◽  
Author(s):  
Laura-Dorina Dinu ◽  
Susan Bach

ABSTRACTEscherichia coliO157:H7 continues to be an important human pathogen and has been increasingly linked to food-borne illness associated with fresh produce, particularly leafy greens. The aim of this work was to investigate the fate ofE. coliO157:H7 on the phyllosphere of lettuce under low temperature and to evaluate the potential hazard of viable but nonculturable (VBNC) cells induced under such stressful conditions. First, we studied the survival of six bacterial strains following prolonged storage in water at low temperature (4°C) and selected two strains with different nonculturable responses for the construction ofE. coliO157:H7 Tn7gfptransformants in order to quantitatively assess the occurrence of human pathogens on the plant surface. Under a suboptimal growth temperature (16°C), bothE. coliO157:H7 strains maintained culturability on lettuce leaves, but under more stressful conditions (8°C), the bacterial populations evolved toward the VBNC state. The strain-dependent nonculturable response was more evident in the experiments with different inoculum doses (109and 106E. coliO157:H7 bacteria per g of leaf) when strain BRMSID 188 lost culturability after 15 days and strain ATCC 43895 lost culturability within 7 days, regardless of the inoculum dose. However, the number of cells entering the VBNC state in high-cell-density inoculum (approximately 55%) was lower than in low-cell-density inoculum (approximately 70%). We recorded the presence of verotoxin for 3 days in samples that contained a VBNC population of 4 to 5 log10cells but did not detect culturable cells. These findings indicate thatE. coliO157:H7 VBNC cells are induced on lettuce plants, and this may have implications regarding food safety.


2015 ◽  
Vol 83 (6) ◽  
pp. 2338-2349 ◽  
Author(s):  
J. Funk ◽  
N. Biber ◽  
M. Schneider ◽  
E. Hauser ◽  
S. Enzenmüller ◽  
...  

In this study, the cytotoxicity of the recently described subtilase variant SubAB2-2of Shiga toxin-producingEscherichia coliwas determined and compared to the plasmid-encoded SubAB1and the chromosome-encoded SubAB2-1variant. The genes for the respective enzymatic active (A) subunits and binding (B) subunits of the subtilase toxins were amplified and cloned. The recombinant toxin subunits were expressed and purified. Their cytotoxicity on Vero cells was measured for the single A and B subunits, as well as for mixtures of both, to analyze whether hybrids with toxic activity can be identified. The results demonstrated that all three SubAB variants are toxic for Vero cells. However, the values for the 50% cytotoxic dose (CD50) differ for the individual variants. Highest cytotoxicity was shown for SubAB1. Moreover, hybrids of subunits from different subtilase toxins can be obtained which cause substantial cytotoxicity to Vero cells after mixing the A and B subunits prior to application to the cells, which is characteristic for binary toxins. Furthermore, higher concentrations of the enzymatic subunit SubA1exhibited cytotoxic effects in the absence of the respective B1subunit. A more detailed investigation in the human HeLa cell line revealed that SubA1alone induced apoptosis, while the B1subunit alone did not induce cell death.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1423
Author(s):  
Nicola Mangieri ◽  
Roberto Foschino ◽  
Claudia Picozzi

Shiga toxin-producing Escherichia coli are pathogenic bacteria able to form biofilms both on abiotic surfaces and on food, thus increasing risks for food consumers. Moreover, biofilms are difficult to remove and more resistant to antimicrobial agents compared to planktonic cells. Bacteriophages, natural predators of bacteria, can be used as an alternative to prevent biofilm formation or to remove pre-formed biofilm. In this work, four STEC able to produce biofilm were selected among 31 different strains and tested against single bacteriophages and two-phage cocktails. Results showed that our phages were able to reduce biofilm formation by 43.46% both when used as single phage preparation and as a cocktail formulation. Since one of the two cocktails had a slightly better performance, it was used to remove pre-existing biofilms. In this case, the phages were unable to destroy the biofilms and reduce the number of bacterial cells. Our data confirm that preventing biofilm formation in a food plant is better than trying to remove a preformed biofilm and the continuous presence of bacteriophages in the process environment could reduce the number of bacteria able to form biofilms and therefore improve the food safety.


2021 ◽  
Author(s):  
Timothy J. Dallman ◽  
David R. Greig ◽  
Saheer E. Gharbia ◽  
Claire Jenkins

Sequence similarity of pathogen genomes can infer the relatedness between isolates as the fewer genetic differences identified between pairs of isolates, the less time since divergence from a common ancestor. Clustering based on hierarchical single linkage clustering of pairwise SNP distances has been employed to detect and investigate outbreaks. Here, we evaluated the evidence-base for the interpretation of phylogenetic clusters of Shiga toxin-producing Escherichia coli (STEC) O157:H7. Whole genome sequences of 1193 isolates of STEC O157:H7 submitted to Public Health England between July 2015 and December 2016 were mapped to the Sakai reference strain. Hierarchical single linkage clustering was performed on the pairwise SNP difference between all isolates at descending distance thresholds. Cases with known epidemiological links fell within 5-SNP single linkage clusters. Five-SNP single linkage community clusters where an epidemiological link was not identified were more likely to be temporally and/or geographically related than sporadic cases. Ten-SNP single linkage clusters occurred infrequently and were challenging to investigate as cases were few, and temporally and/or geographically dispersed. A single linkage cluster threshold of 5-SNPs has utility for the detection of outbreaks linked to both persistent and point sources. Deeper phylogenetic analysis revealed that the distinction between domestic UK and imported isolates could be inferred at the sub-lineage level. Cases associated with domestically acquired infection that fall within clusters that are predominantly travel associated are likely to be caused by contaminated imported food.


Sign in / Sign up

Export Citation Format

Share Document