scholarly journals Effect of Antimicrobial and Physical Treatments on Growth of Multispecies Staphylococcal Biofilms

2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Elizabeth J. Stewart ◽  
David E. Payne ◽  
Tianhui Maria Ma ◽  
J. Scott VanEpps ◽  
Blaise R. Boles ◽  
...  

ABSTRACT The prevalence and structure of Staphylococcus aureus and Staphylococcus epidermidis within multispecies biofilms were found to depend sensitively on physical environment and antibiotic dosage. Although these species commonly infect similar sites, such as orthopedic implants, little is known about their behavior in multispecies communities, particularly in response to treatment. This research establishes that S. aureus is much more prevalent than S. epidermidis when simultaneously seeded and grown under unstressed conditions (pH 7, 37°C) in both laboratory and clinical strains. In multispecies communities, S. epidermidis is capable of growing a more confluent biofilm when the addition of S. aureus is delayed 4 to 6 h during 18 h of growth. Different vancomycin dosages generate various behaviors: S. epidermidis is more prevalent at a dose of 1.0 μg/ml vancomycin, but reduced growth of both species occurs at 1.9 μg/ml vancomycin. This variability is consistent with the different MICs of S. aureus and S. epidermidis. Growth at higher temperature (45°C) results in an environment where S. aureus forms porous biofilms. This porosity allows S. epidermidis to colonize more of the surface, resulting in detectable S. epidermidis biomass. Variations in pH result in increased prevalence of S. epidermidis at low pH (pH 5 and 6), while S. aureus remains dominant at high pH (pH 8 and 9). This work establishes the structural variability of multispecies staphylococcal biofilms as they undergo physical and antimicrobial treatments. It provides a basis for understanding the structure of these communities at infection sites and how treatments disrupt their multispecies behaviors. IMPORTANCE Staphylococcus aureus and Staphylococcus epidermidis are two species of bacteria that are commonly responsible for biofilm infections on medical devices. Biofilms are structured communities of bacteria surrounded by polysaccharides, proteins, and DNA; bacteria are more resistant to antimicrobials as part of a biofilm than as individual cells. This work investigates the structure and prevalence of these two organisms when grown together in multispecies biofilms and shows shifts in the behavior of the polymicrobial community when grown in various concentrations of vancomycin (an antibiotic commonly used to treat staphylococcal infections), in a high-temperature environment (a condition previously shown to lead to cell disruption and death), and at low and high pH (a change that has been previously shown to soften the mechanical properties of staphylococcal biofilms). These shifts in community structure demonstrate the effect such treatments may have on multispecies staphylococcal infections.

2021 ◽  
Vol 70 (9) ◽  
Author(s):  
Vidula Iyer ◽  
Janhavi Raut ◽  
Anindya Dasgupta

The pH of skin is critical for skin health and resilience and plays a key role in controlling the skin microbiome. It has been well reported that under dysbiotic conditions such as atopic dermatitis (AD), eczema, etc. there are significant aberrations of skin pH, along with a higher level of Staphylococcus aureus compared to the commensal Staphylococcus epidermidis on skin. To understand the effect of pH on the relative growth of S. epidermidis and S. aureus , we carried out simple in vitro growth kinetic studies of the individual microbes under varying pH conditions. We demonstrated that the growth kinetics of S. epidermidis is relatively insensitive to pH within the range of 5–7, while S. aureus shows a stronger pH dependence in that range. Gompertz’s model was used to fit the pH dependence of the growth kinetics of the two bacteria and showed that the equilibrium bacterial count of S. aureus was the more sensitive parameter. The switch in growth rate happens at a pH of 6.5–7. Our studies are in line with the general hypothesis that keeping the skin pH within an acidic range is advantageous in terms of keeping the skin microbiome in balance and maintaining healthy skin.


2021 ◽  
Vol 70 (6) ◽  
Author(s):  
Elyse C. Curry ◽  
Ryan G. Hart ◽  
Danni Y. Habtu ◽  
Neal R. Chamberlain

Introduction. This study describes the identification and partial characterization of persistence-inducing factors (PIFs) from staphylococci. Hypothesis/Gap Statement. Increases in persisters during mid-log phase growth indicate that quorum-sensing factors might be produced by staphylococci. Aim. To identify and partially characterize PIFs from Staphylococcus epidermidis RP62A and Staphylococcus aureus SH1000. Methodology. Others have demonstrated a significant increase in persister numbers during mid-log phase. Inducers of this mid-log increase have yet to be identified in staphylococci. Optical density at 600 nm (OD600) was used instead of time to determine when persister numbers increased during logarithmic growth. Concentrated culture filtrates (CCFs) from S. epidermidis and S. aureus were obtained at various OD600s and following incubation at 16 h. The CCFs were used to develop a PIF assay. The PIF assay was used to partially characterize PIF from S. epidermidis and S. aureus for sizing of PIF activity, temperature and protease sensitivity and inter-species communications. Results. The optimal OD600s for S. epidermidis and S. aureus PIF assays were 2.0 and 0.5, respectively. The highest PIF activity for both species was from CCF following incubation overnight (16 h). S. epidermidis ’ PIF activity was decreased by storage at 4 oC but not at 20 oC (16 h), 37 oC (1 h) or 100 oC (15 min). S. aureus ’ PIF activity was decreased following storage at 4 oC (2 weeks) and after boiling at 100 oC for 5 min but not after incubation at 37 oC (1 h). PIF activity from both species went through a 3000 molecular weight cutoff ultrafilter. Proteinase K treatment of S. aureus PIF decreased activity but did not decrease the PIF activity of S. epidermidis . PIF from S. epidermidis did not increase persisters when used to treat S. aureus cells and nor did PIF from S. aureus increase persisters when used to treat S. epidermidis cells. Conclusions. Attempts to discover PIFs for staphylococci were unsuccessful due to the time-based means used to identify mid-log. Both staphylococcal species produce extracellular, low-molecular-weight inducers of persistence when assayed using an OD600 -based PIF assay.


2014 ◽  
Vol 81 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Pilar Sanchez-Vizuete ◽  
Dominique Le Coq ◽  
Arnaud Bridier ◽  
Jean-Marie Herry ◽  
Stéphane Aymerich ◽  
...  

ABSTRACTIn most habitats, microbial life is organized in biofilms, three-dimensional edifices sustained by extracellular polymeric substances that enable bacteria to resist harsh and changing environments. Under multispecies conditions, bacteria can benefit from the polymers produced by other species (“public goods”), thus improving their survival under toxic conditions. A recent study showed that aBacillus subtilishospital isolate (NDmed) was able to protectStaphylococcus aureusfrom biocide action in multispecies biofilms. In this work, we identifiedypqP, a gene whose product is required in NDmed for thick-biofilm formation on submerged surfaces and for resistance to two biocides widely used in hospitals. NDmed andS. aureusformed mixed biofilms, and both their spatial arrangement and pathogen protection were mediated by YpqP. FunctionalypqPis present in other naturalB. subtilisbiofilm-forming isolates. However, the gene is disrupted by the SPβ prophage in the weak submerged-biofilm-forming strains NCIB3610 and 168, which are both less resistant than NDmed to the biocides tested. Furthermore, in a 168 laboratory strain cured of the SPβ prophage, the reestablishment of a functionalypqPgene led to increased thickness and resistance to biocides of the associated biofilms. We therefore propose that YpqP is a new and important determinant ofB. subtilissurface biofilm architecture, protection against exposure to toxic compounds, and social behavior in bacterial communities.


2014 ◽  
Vol 58 (12) ◽  
pp. 7606-7610 ◽  
Author(s):  
Kaat De Cremer ◽  
Nicolas Delattin ◽  
Katrijn De Brucker ◽  
Annelies Peeters ◽  
Soña Kucharíková ◽  
...  

ABSTRACTWe here report on thein vitroactivity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, includingCandida albicans,Candida glabrata,Candida dubliniensis,Candida krusei,Pseudomonas aeruginosa,Staphylococcus aureus, andStaphylococcus epidermidis. We validated thein vivoefficacy of orally administered toremifene againstC. albicans and S. aureusbiofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound.


Author(s):  
Kam Pou Ha ◽  
Andrew M. Edwards

Staphylococcus aureus is a common cause of both superficial and invasive infections of humans and animals. Despite a potent host response and apparently appropriate antibiotic therapy, staphylococcal infections frequently become chronic or recurrent, demonstrating a remarkable ability of S. aureus to withstand the hostile host environment.


2018 ◽  
Vol 84 (15) ◽  
Author(s):  
Yufeng Zhang ◽  
Mengjun Cheng ◽  
Hao Zhang ◽  
Jiaxin Dai ◽  
Zhimin Guo ◽  
...  

ABSTRACT Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we observed the ability of the phage lysin LysGH15 to eliminate staphylococcal planktonic cells and biofilms formed by Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis. All these strains were sensitive to LysGH15, showing reductions in bacterial counts of approximately 4 log units within 30 min after treatment with 20 μg/ml of LysGH15, and the MICs ranged from 8 μg/ml to 32 μg/ml. LysGH15 efficiently prevented biofilm formation by the four staphylococcal species at a dose of 50 μg/ml. At a higher dose (100 μg/ml), LysGH15 also showed notable disrupting activity against 24-h and 72-h biofilms formed by S. aureus and coagulase-negative species. In the in vivo experiments, a single intraperitoneal injection of LysGH15 (20 μg/mouse) administered 1 h after the injection of S. epidermidis at double the minimum lethal dose was sufficient to protect the mice. The S. epidermidis cell counts were 4 log units lower in the blood and 3 log units lower in the organs of mice 24 h after treatment with LysGH15 than in the untreated control mice. LysGH15 reduced cytokine levels in the blood and improved pathological changes in the organs. The broad antistaphylococcal activity exerted by LysGH15 on planktonic cells and biofilms makes LysGH15 a valuable treatment option for biofilm-related or non-biofilm-related staphylococcal infections. IMPORTANCE Most staphylococcal species are major causes of health care- and community-associated infections. In particular, Staphylococcus aureus is a common and dangerous pathogen, and Staphylococcus epidermidis is a ubiquitous skin commensal and opportunistic pathogen. Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we found that all tested S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis strains were sensitive to the phage lysin LysGH15 (MICs ranging from 8 to 32 μg/ml). More importantly, LysGH15 not only prevented biofilm formation by these staphylococci but also disrupted 24-h and 72-h biofilms. Furthermore, the in vivo efficacy of LysGH15 was demonstrated in a mouse model of S. epidermidis bacteremia. Thus, LysGH15 exhibits therapeutic potential for treating biofilm-related or non-biofilm-related infections caused by diverse staphylococci.


2013 ◽  
Vol 57 (7) ◽  
pp. 2923-2928 ◽  
Author(s):  
Rodrigo E. Mendes ◽  
Lalitagauri M. Deshpande ◽  
Hector F. Bonilla ◽  
Stefan Schwarz ◽  
Michael D. Huband ◽  
...  

ABSTRACTNineteen linezolid-resistantStaphylococcus epidermidisand twoStaphylococcus aureusisolates recovered from two medical institutions in northeast Ohio and anS. aureuscfrindex strain previously collected in the same facilities during the 2007 SENTRY Antimicrobial Surveillance Program were investigated for the genetic basis of oxazolidinone resistance and the location ofcfr. S. aureusisolates were typed by pulsed-field gel electrophoresis (PFGE),spatyping, and multilocus sequence typing (MLST). The location ofcfrwas determined by Southern blotting and hybridization. Plasmid sequencing was performed using the 454 Life Sciences (Roche) GS-FLX DNA platform. The twoS. aureusisolates showed unique PFGE patterns but were multilocus sequence type 5 (ST5) andspatype t002, whereas theS. aureusindex strain was ST239 and t037. Southern blot and hybridization experiments showed thatcfrwas plasmid located and that theS. epidermidisisolates, one of theS. aureusisolates, and theS. aureusindex strain shared an identicalcfr-carrying plasmid (39.3 kb). Sequencing results confirmed these findings. A 10-kb fragment containingcfrshowed the highest identity (99.9%) to a 9.5-kb fragment of plasmid pSCFS3 from a bovineStaphylococcus lentusisolate from Germany. In addition, these 39.3-kb plasmids from humanS. epidermidisandS. aureusexhibited BglII restriction profiles very similar to that observed for plasmid pSCFS3. Thecfr-carrying plasmid detected in the remainingS. aureusisolate (7.9 kb) was distinct and showed the highest identity to the chromosomalcfrintegrate found in the chromosomal DNA of aProteus vulgarisisolate from a pig in China.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Sarah Tavernier ◽  
Aurélie Crabbé ◽  
Mayram Hacioglu ◽  
Liesbeth Stuer ◽  
Silke Henry ◽  
...  

ABSTRACT In young cystic fibrosis (CF) patients, Staphylococcus aureus is typically the most prevalent organism, while in adults, Pseudomonas aeruginosa is the major pathogen. More recently, it was observed that also Streptococcus anginosus plays an important role in exacerbations of respiratory symptoms. These species are often coisolated from CF lungs, yet little is known about whether antibiotic killing of one species is influenced by the presence of others. In the present study, we compared the activities of various antibiotics against S. anginosus, S. aureus, and P. aeruginosa when grown in monospecies biofilms with the activity observed in a multispecies biofilm. Our results show that differences in antibiotic activity against species grown in mono- and multispecies biofilms are species and antibiotic dependent. Fewer S. anginosus cells are killed by antibiotics that interfere with cell wall synthesis (amoxicillin plus sulbactam, cefepime, imipenem, meropenem, and vancomycin) in the presence of S. aureus and P. aeruginosa, while for ciprofloxacin, levofloxacin, and tobramycin, no difference was observed. In addition, we observed that the cell-free supernatant of S. aureus, but not that of P. aeruginosa biofilms, also caused this decrease in killing. Overall, S. aureus was more affected by antibiotic treatment in a multispecies biofilm, while for P. aeruginosa, no differences were observed between growth in mono- or multispecies biofilms. The results of the present study suggest that it is important to take the community composition into account when evaluating the effect of antimicrobial treatments against certain species in mixed biofilms.


2012 ◽  
Vol 56 (6) ◽  
pp. 2842-2845 ◽  
Author(s):  
Roger Bayston ◽  
Gautham Ullas ◽  
Waheed Ashraf

ABSTRACTCerebrospinal fluid (CSF) shunts used to treat hydrocephalus have an overall infection rate of about 10% of operations. The commonest causative bacteria areStaphylococcus epidermidis, followed byStaphylococcus aureusand enterococci. Major difficulties are encountered with nonsurgical treatment due to biofilm development in the shunt tubing and inability to achieve sufficiently high CSF drug levels by intravenous administration. Recently, three cases ofS. epidermidisCSF shunt infection have been treated by intravenous linezolid without surgical shunt removal, and we therefore investigated vancomycin and linezolid against biofilms of these bacteriain vitro. A continuous-perfusion model of shunt catheter biofilms was used to establish mature (1-week) biofilms ofStaphylococcus aureus,Staphylococcus epidermidis(both methicillin resistant [MRSA and MRSE]),Enterococcus faecalis, andEnterococcus faecium. They were then “treated” with either vancomycin or linezolid in concentrations achievable in CSF for 14 days. The biofilms were then monitored for 1 week for eradication and for regrowth. Enterococcal biofilms were not eradicated by either vancomycin or linezolid. Staphylococcal biofilms were eradicated by both antibiotics after 2 days and did not regrow. No resistance was seen. Linezolid at concentrations achievable by intravenous or oral administration was able to eradicate biofilms of bothS. epidermidis(MRSE) andS. aureus(MRSA). Neither vancomycin at concentrations achievable by intrathecal administration nor linezolid was able to eradicate enterococcal biofilms. It is hoped that thesein vitroresults will stimulate further clinical trials with linezolid, avoiding surgical shunt removal.


Sign in / Sign up

Export Citation Format

Share Document