scholarly journals Response of Fatty Acid Synthesis Genes to the Binding of Human Salivary Amylase by Streptococcus gordonii

2012 ◽  
Vol 78 (6) ◽  
pp. 1865-1875 ◽  
Author(s):  
Anna E. Nikitkova ◽  
Elaine M. Haase ◽  
M. Margaret Vickerman ◽  
Steven R. Gill ◽  
Frank A. Scannapieco

ABSTRACTStreptococcus gordonii, an important primary colonizer of dental plaque biofilm, specifically binds to salivary amylase via the surface-associated amylase-binding protein A (AbpA). We hypothesized that a function of amylase binding toS. gordoniimay be to modulate the expression of chromosomal genes, which could influence bacterial survival and persistence in the oral cavity. Gene expression profiling by microarray analysis was performed to detect genes inS. gordoniistrain CH1 that were differentially expressed in response to the binding of purified human salivary amylase versus exposure to purified heat-denatured amylase. Selected genes found to be differentially expressed were validated by quantitative reverse transcription-PCR (qRT-PCR). Five genes from the fatty acid synthesis (FAS) cluster were highly (10- to 35-fold) upregulated inS. gordoniiCH1 cells treated with native amylase relative to those treated with denatured amylase. AnabpA-deficient strain ofS. gordoniiexposed to amylase failed to show a response in FAS gene expression similar to that observed in the parental strain. Predicted phenotypic effects of amylase binding toS. gordoniistrain CH1 (associated with increased expression of FAS genes, leading to changes in fatty acid synthesis) were noted; these included increased bacterial growth, survival at low pH, and resistance to triclosan. These changes were not observed in the amylase-exposedabpA-deficient strain, suggesting a role for AbpA in the amylase-induced phenotype. These results provide evidence that the binding of salivary amylase elicits a differential gene response inS. gordonii, resulting in a phenotypic adjustment that is potentially advantageous for bacterial survival in the oral environment.

2015 ◽  
Vol 81 (16) ◽  
pp. 5363-5374 ◽  
Author(s):  
Elaine M. Haase ◽  
Xianghui Feng ◽  
Jiachuan Pan ◽  
Jeffrey C. Miecznikowski ◽  
Frank A. Scannapieco

ABSTRACTStreptococcus gordonii, a primary colonizer of the tooth surface, interacts with salivary α-amylase via amylase-binding protein A (AbpA). This enzyme hydrolyzes starch to glucose, maltose, and maltodextrins that can be utilized by various oral bacteria for nutrition. Microarray studies demonstrated that AbpA modulates gene expression in response to amylase, suggesting that the amylase-streptococcal interaction may function in ways other than nutrition. The goal of this study was to explore the role of AbpA in gene regulation through comparative transcriptional profiling of wild-type KS1 and AbpA−mutant KS1ΩabpAunder various environmental conditions. A portion of the total RNA isolated from mid-log-phase cells grown in 5% CO2in (i) complex medium with or without amylase, (ii) defined medium (DM) containing 0.8% glucose with/without amylase, and (iii) DM containing 0.2% glucose and amylase with or without starch was reverse transcribed to cDNA and the rest used for RNA sequencing. Changes in the expression of selected genes were validated by quantitative reverse transcription-PCR. Maltodextrin-associated genes, fatty acid synthesis genes and competence genes were differentially expressed in a medium-dependent manner. Genes in another cluster containing a putative histidine kinase/response regulator, peptide methionine sulfoxide reductase, thioredoxin protein, lipoprotein, and cytochromec-type protein were downregulated in KS1ΩabpAunder all of the environmental conditions tested. Thus, AbpA appears to modulate genes associated with maltodextrin utilization/transport and fatty acid synthesis. Importantly, in all growth conditions AbpA was associated with increased expression of a potential two-component signaling system associated with genes involved in reducing oxidative stress, suggesting a role in signal transduction and stress tolerance.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Christopher E. Wozniak ◽  
Zhenjian Lin ◽  
Eric W. Schmidt ◽  
Kelly T. Hughes ◽  
Theodore G. Liou

ABSTRACTMicrobes encode many uncharacterized gene clusters that may produce antibiotics and other bioactive small molecules. Methods for activating these genes are needed to explore their biosynthetic potential. A transposon containing an inducible promoter was randomly inserted into the genome of the soil bacteriumBurkholderia thailandensisto induce antibiotic expression. This screen identified the polyketide/nonribosomal peptide thailandamide as an antibiotic and discovered its regulator, AtsR. Mutants ofSalmonellaresistant to thailandamide had mutations in theaccAgene for acetyl coenzyme A (acetyl-CoA) carboxylase, which is one of the first enzymes in the fatty acid synthesis pathway. A second copy ofaccAin the thailandamide synthesis gene cluster keepsB. thailandensisresistant to its own antibiotic. These genetic techniques will likely be powerful tools for discovering other unusual antibiotics.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S9-S10
Author(s):  
Brooklyn McGrew ◽  
Aman Shrivastava ◽  
Philip Fernandes ◽  
Lubaina Ehsan ◽  
Yash Sharma ◽  
...  

Abstract Background Candidate markers for Crohn’s Disease (CD) may be identified via gene expression-based construction of metabolic networks (MN). These can computationally describe gene-protein-reaction associations for entire tissues and also predict the flux of reactions (rate of turnover of specific molecules via a metabolic pathway). Recon3D is the most comprehensive human MN to date. We used publicly available CD transcriptomic data along with Recon3D to identify metabolites as potential diagnostic and prognostic biomarkers. Methods Terminal ileal gene expression profiles (36,372 genes; 218 CD. 42 controls) from the RISK cohort (Risk Stratification and Identification of Immunogenetic and Microbial Markers of Rapid Disease Progression in Children with Crohn’s Disease) and their transcriptomic abundances were used. Recon3D was pruned to only include RISK dataset transcripts which determined metabolic reaction linkage with transcriptionally active genes. Flux balance analysis (FBA) was then run using RiPTiDe with context specific transcriptomic data to further constrain genes (Figure 1). RiPTiDe was independently run on transcriptomic data from both CD and controls. From the pruned and constricted MN obtained, reactions were extracted for further analysis. Results After applying the necessary constraints to modify Recon3D, 527 CD and 537 control reactions were obtained. Reaction comparison with a publicly available list of healthy small intestinal epithelial reactions (n=1282) showed an overlap of 80 CD and 84 control reactions. These were then further grouped based on their metabolic pathways. RiPTiDe identified context specific metabolic pathway activity without supervision and the percentage of forward, backward, and balanced reactions for each metabolic pathway (Figure 2). The metabolite concentrations in the small intestine was altered among CD patients. Notably, the citric acid cycle and malate-aspartate shuttle were affected, highlighting changes in mitochondrial metabolic pathways. This is illustrated by changes in the number of reactions at equilibrium between CD and control. Conclusions The results are relevant as cytosolic acetyl-CoA is needed for fatty acid synthesis and is obtained by removing citrate from the citric acid cycle. An intermediate removal from the cycle has significant cataplerotic effects. The malate-aspartate shuttle also allows electrons to move across the impermeable membrane in the mitochondria (fatty acid synthesis location). These findings are reported by previously published studies where gene expression for fatty acid synthesis is altered in CD patients along with mitochondrial metabolic pathway changes, resulting in altered cell homeostasis. In-depth analysis is currently underway with our work supporting the utility of potential metabolic biomarkers for CD diagnosis, management and improved care.


Animals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 467 ◽  
Author(s):  
Ahmed A. Saleh ◽  
Abeer A. Kirrella ◽  
Safaa E. Abdo ◽  
Mahmoud M. Mousa ◽  
Nemat A. Badwi ◽  
...  

The present study was conducted to examine that impact of dietary xylanase (Xyl) and arabinofuranosidase (Abf) supplementation on the performance, protein and fat digestibility, the lipid peroxidation, the plasma biochemical traits, and the immune response of broilers. A total of 480, un-sexed, and one-day-old broilers (Ross 308) were randomly divided into three treatments with eight replicates, where chicks in the first treatment were fed basal diets and served as the control, chicks in the second treatment were fed diets formulated with reductions of 90 kcal/kg, and chicks in the third treatment were fed the same formulated diets used in the second group as well as the Xyl and Abf combination (Rovabio® Advance). Feed intake was decreased by the low energy diet, leading to an enhancement in feed efficiency enzyme supplementation in the low energy diet (p < 0.015). Both protein and fat digestibility were improved (p < 0.047) due to enzyme supplementation. Moreover, enzyme supplementation increased muscle total lipids content and decreased muscle thiobarbituric acid retroactive substance content. Furthermore, diets supplemented with Xyl and Abf exhibited an increase in antibody titers against the Newcastle disease virus (p < 0.026). In addition, enzyme supplementation increased gene expression related to growth and gene expression related to fatty acid synthesis. It could be concluded that dietary Xyl and Abf supplementation had beneficial impacts on growth, nutrient digestibility, lipid peroxidation, immune response, and gene expressions related to growth and fatty acid synthesis in broiler chickens fed low-energy diets.


2013 ◽  
Vol 57 (11) ◽  
pp. 5729-5732 ◽  
Author(s):  
Joshua B. Parsons ◽  
Matthew W. Frank ◽  
Jason W. Rosch ◽  
Charles O. Rock

ABSTRACTInactivation of acetyl-coenzyme A (acetyl-CoA) carboxylase confers resistance to fatty acid synthesis inhibitors inStaphylococcus aureuson media supplemented with fatty acids. The addition ofanteiso-fatty acids (1 mM) plus lipoic acid supports normal growth of ΔaccDstrains, but supplementation with mammalian fatty acids was less efficient. Mice infected with strain RN6930 developed bacteremia, but bacteria were not detected in mice infected with its ΔaccDderivative.S. aureusbacteria lacking acetyl-CoA carboxylase can be propagatedin vitrobut were unable to proliferate in mice, suggesting that the acquisition of inactivating mutations in this enzyme is not a mechanism for the evasion of fatty acid synthesis inhibitors.


2021 ◽  
Vol 89 (5) ◽  
Author(s):  
Zhixin Wan ◽  
Riguo Lan ◽  
Yilin Zhou ◽  
Yuanyuan Xu ◽  
Zhenglei Wang ◽  
...  

ABSTRACT Metabolic alterations occur in pathogenic infections, but the role of lipid metabolism in the progression of bacterial mastitis is unclear. Cross talk between lipid droplets (LDs) and invading bacteria occurs, and targeting of de novo lipogenesis inhibits pathogen reproduction. In this study, we investigate the role(s) of lipid metabolism in mammary cells during Streptococcus uberis infection. Our results indicate that S. uberis induces the synthesis of fatty acids and production of LDs. Importantly, taurine reduces fatty acid synthesis, the abundance of LDs and the in vitro bacterial load of S. uberis. These changes are mediated, at least partly, by the E3 ubiquitin ligase IDOL, which is associated with the degradation of low-density lipoprotein receptors (LDLRs). We have identified a critical role for IDOL-mediated fatty acid synthesis in bacterial infection, and we suggest that taurine may be an effective prophylactic or therapeutic strategy for preventing S. uberis mastitis.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Zhe Hu ◽  
Huijuan Dong ◽  
Jin-Cheng Ma ◽  
Yonghong Yu ◽  
Kai-Hui Li ◽  
...  

ABSTRACTThe precursors of the diffusible signal factor (DSF) family signals ofXanthomonas campestrispv.campestrisare 3-hydroxyacyl-acyl carrier protein (3-hydroxyacyl-ACP) thioesters having acyl chains of 12 to 13 carbon atoms produced by the fatty acid biosynthetic pathway. We report a novel 3-oxoacyl-ACP reductase encoded by theX. campestrispv.campestrisXCC0416 gene (fabG2), which is unable to participate in the initial steps of fatty acyl synthesis. This was shown by the failure of FabG2 expression to allow growth at the nonpermissive temperature of anEscherichia colifabGtemperature-sensitive strain. However, when transformed into theE. colistrain together with a plasmid bearing theVibrio harveyiacyl-ACP synthetase gene (aasS), growth proceeded, but only when the medium contained octanoic acid.In vitroassays showed that FabG2 catalyzes the reduction of long-chain (≥C8) 3-oxoacyl-ACPs to 3-hydroxyacyl-ACPs but is only weakly active with shorter-chain (C4, C6) substrates. FabG1, the housekeeping 3-oxoacyl-ACP reductase encoded within the fatty acid synthesis gene cluster, could be deleted in a strain that overexpressedfabG2but only in octanoic acid-supplemented media. Growth of theX. campestrispv.campestrisΔfabG1strain overexpressingfabG2requiredfabHfor growth with octanoic acid, indicating that octanoyl coenzyme A is elongated byX. campestrispv.campestrisfabH. Deletion offabG2reduced DSF family signal production, whereas overproduction of either FabG1 or FabG2 in the ΔfabG2strain restored DSF family signal levels.IMPORTANCEQuorum sensing mediated by DSF signaling molecules regulates pathogenesis in several different phytopathogenic bacteria, includingXanthomonas campestrispv.campestris. DSF signaling also plays a key role in infection by the human pathogenBurkholderia cepacia. The acyl chains of the DSF molecules are diverted and remodeled from a key intermediate of the fatty acid synthesis pathway. We report aXanthomonas campestrispv.campestrisfatty acid synthesis enzyme, FabG2, of novel specificity that seems tailored to provide DSF signaling molecule precursors.


2021 ◽  
Author(s):  
Sumie Eto ◽  
Rumie Matsumura ◽  
Mai Fujimi ◽  
Yasuhiro Shimane ◽  
Samuel Berhanu ◽  
...  

Phospholipid synthesis is a fundamental process that promotes cell propagation and, presently, is the most challenging issue in artificial cell research aimed at reconstituting living cells from biomolecules. Here, we constructed a cell-free phospholipid synthesis system that combines in vitro fatty acid synthesis and a cell-free gene expression system that synthesizes acyltransferases for phospholipid synthesis. Fatty acids were synthesized from acetyl-CoA and malonyl-CoA, then continuously converted into phosphatidic acids by the cell-free synthesized acyltransferases. Because the system can avoid the accumulation of synthetic intermediates that suppress the reaction, the yield of phospholipid has significantly improved from previous schemes (up to 400 μM). Additionally, by adding enzymes for recycling CoA, we synthesized phosphatidic acids from acetic acid and bicarbonate as carbon sources. The constructed system is available to express the genes from pathogenic bacteria and to analyze the synthesized phospholipids. By encapsulating our system inside giant vesicles, it would be possible to construct the artificial cells in which the membrane grows and divides sustainably.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Lei Zhu ◽  
Qi Zou ◽  
Xinyun Cao ◽  
John E. Cronan

ABSTRACTAcyl carrier proteins (ACPs) play essential roles in the synthesis of fatty acids and transfer of long fatty acyl chains into complex lipids. TheEnterococcus faecalisgenome contains two annotatedacpgenes, calledacpAandacpB. AcpA is encoded within the fatty acid synthesis (fab) operon and appears essential. In contrast, AcpB is an atypical ACP, having only 30% residue identity with AcpA, and is not essential. Deletion ofacpBhas no effect onE. faecalisgrowth orde novofatty acid synthesis in media lacking fatty acids. However, unlike the wild-type strain, where growth with oleic acid resulted in almost complete blockage ofde novofatty acid synthesis, theΔacpBstrain largely continuedde novofatty acid synthesis under these conditions. Blockage in the wild-type strain is due to repression offaboperon transcription, leading to levels of fatty acid synthetic proteins (including AcpA) that are insufficient to supportde novosynthesis. Transcription of thefaboperon is regulated by FabT, a repressor protein that binds DNA only when it is bound to an acyl-ACP ligand. Since AcpA is encoded in thefaboperon, its synthesis is blocked when the operon is repressed andacpAthus cannot provide a stable supply of ACP for synthesis of the acyl-ACP ligand required for DNA binding by FabT. In contrast to AcpA,acpBtranscription is unaffected by growth with exogenous fatty acids and thus provides a stable supply of ACP for conversion to the acyl-ACP ligand required for repression by FabT. Indeed,ΔacpBandΔfabTstrains have essentially the samede novofatty acid synthesis phenotype in oleic acid-grown cultures, which argues that neither strain can form the FabT-acyl-ACP repression complex. Finally, acylated derivatives of both AcpB and AcpA were substrates for theE. faecalisenoyl-ACP reductases and forE. faecalisPlsX (acyl-ACP; phosphate acyltransferase).IMPORTANCEAcpB homologs are encoded by many, but not all, lactic acid bacteria (Lactobacillales), including many members of the human microbiome. The mechanisms regulating fatty acid synthesis by exogenous fatty acids play a key role in resistance of these bacteria to those antimicrobials targeted at fatty acid synthesis enzymes. Defective regulation can increase resistance to such inhibitors and also reduce pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document