scholarly journals Development of a Markerless Gene Replacement System for Acidithiobacillus ferrooxidans and Construction of apfkBMutant

2011 ◽  
Vol 78 (6) ◽  
pp. 1826-1835 ◽  
Author(s):  
Huiyan Wang ◽  
Xiangmei Liu ◽  
Shuangshuang Liu ◽  
Yangyang Yu ◽  
Jianqun Lin ◽  
...  

ABSTRACTThe extremely acidophilic, chemolithoautotrophicAcidithiobacillus ferrooxidansis an important bioleaching bacterium of great value in the metallurgical industry and environmental protection. In this report, a mutagenesis system based on the homing endonuclease I-SceI was developed to produce targeted, unmarked gene deletions in the strainA. ferrooxidansATCC 23270. A targeted phosphofructokinase (PFK) gene (pfkB) mutant ofA. ferrooxidansATCC 23270 was constructed by homologous recombination and identified by PCR with specific primers as well as Southern blot analysis. This potentialpfkBgene (AFE_1807) was also characterized by expression in PFK-deficientEscherichia colicells, and heteroexpression of the PFKB protein demonstrated that it had functional PFK activity, though it was significantly lower (about 800-fold) than that of phosphofructokinase-2 (PFK-B) expressed by thepfkBgene fromE. coliK-12. The function of the potential PFKB protein inA. ferrooxidanswas demonstrated by comparing the properties of thepfkBmutant with those of the wild type. ThepfkBmutant strain displayed a relatively reduced growth capacity in S0medium (0.5% [wt/vol] elemental sulfur in 9K basal salts solution adjusted to pH 3.0 with H2SO4), but the mutation did not completely preventA. ferrooxidansfrom assimilating exogenous glucose. The transcriptional analysis of some related genes in central carbohydrate metabolism in the wild-type and mutant strains with or without supplementation of glucose was carried out by quantitative reverse transcription-PCR. This report suggests that the markerless mutagenesis strategy could serve as a model for functional studies of other genes of interest fromA. ferrooxidansand multiple mutations could be made in a singleA. ferrooxidansstrain.

2015 ◽  
Vol 81 (11) ◽  
pp. 3880-3888 ◽  
Author(s):  
Jimmy E. Becerra ◽  
María J. Yebra ◽  
Vicente Monedero

ABSTRACTl-Fucose is a sugar present in human secretions as part of human milk oligosaccharides, mucins, and other glycoconjugates in the intestinal epithelium. The genome of the probioticLactobacillus rhamnosusGG (LGG) carries a gene cluster encoding a putativel-fucose permease (fucP),l-fucose catabolic pathway (fucI,fucK,fucU, andfucA), and a transcriptional regulator (fucR). The metabolism ofl-fucose in LGG results in 1,2-propanediol production, and theirfucIandfucPmutants displayed a severe and mild growth defect onl-fucose, respectively. Transcriptional analysis revealed that thefucgenes are induced byl-fucose and subject to a strong carbon catabolite repression effect. This induction was triggered by FucR, which acted as a transcriptional activator necessary for growth onl-fucose. LGG utilized fucosyl-α1,3-N-acetylglucosamine and contrarily to other lactobacilli, the presence offucgenes allowed this strain to use thel-fucose moiety. InfucIandfucRmutants, but not infucPmutant,l-fucose was not metabolized and it was excreted to the medium during growth on fucosyl-α1,3-N-acetylglucosamine. Thefucgenes were induced by this fucosyl-disaccharide in the wild type and thefucPmutant but not in afucImutant, showing that FucP does not participate in the regulation offucgenes and thatl-fucose metabolism is needed for FucR activation. Thel-fucose operon characterized here constitutes a new example of the many factors found in LGG that allow this strain to adapt to the gastrointestinal conditions.


2017 ◽  
Vol 83 (21) ◽  
Author(s):  
Tingting Guo ◽  
Li Zhang ◽  
Yongping Xin ◽  
ZhenShang Xu ◽  
Huiying He ◽  
...  

ABSTRACT Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497 ). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δpox mutant, while those of POX increased significantly in the Δpdh mutant. More lactate but less acetate was produced in the Δpdh mutant than in the wild-type and Δpox mutant strains, and more H2O2 (a product of the POX pathway) was produced in the Δpdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we reported that both PDH and POX worked in the aerobic conversion of lactate to acetate in L. brevis ATCC 367, in dominant and secondary roles, respectively. Our findings will further develop the theory of aerobic metabolism by LAB.


2014 ◽  
Vol 80 (22) ◽  
pp. 6879-6887 ◽  
Author(s):  
Pin Yu ◽  
Shui-Ping Liu ◽  
Qing-Ting Bu ◽  
Zhen-Xing Zhou ◽  
Zhen-Hong Zhu ◽  
...  

ABSTRACTDetailed mechanisms ofWhiB-like (Wbl) proteins involved in antibiotic biosynthesis and morphological differentiation are poorly understood. Here, we characterize the role of WblAch, aStreptomyces chattanoogensisL10 protein belonging to this superfamily. Based on DNA microarray data and verified by real-time quantitative PCR (qRT-PCR), the expression ofwblAchwas shown to be positively regulated by AdpAch. Gel retardation assays and DNase I footprinting experiments showed that AdpAchhas specific DNA-binding activity for the promoter region ofwblAch. Gene disruption and genetic complementation revealed that WblAchacts in a positive manner to regulate natamycin production. WhenwblAchwas overexpressed in the wild-type strain, the natamycin yield was increased by ∼30%. This provides a strategy to generate improved strains for natamycin production. Moreover, transcriptional analysis showed that the expression levels ofwhigenes (includingwhiA,whiB,whiH, andwhiI) were severely depressed in the ΔwblAchmutant, suggesting that WblAchplays a part in morphological differentiation by influencing the expression of thewhigenes.


2011 ◽  
Vol 80 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Chen Li ◽  
Kurniyati ◽  
Bo Hu ◽  
Jiang Bian ◽  
Jianlan Sun ◽  
...  

ABSTRACTThe oral bacteriumPorphyromonas gingivalisis a key etiological agent of human periodontitis, a prevalent chronic disease that affects up to 80% of the adult population worldwide.P. gingivalisexhibits neuraminidase activity. However, the enzyme responsible for this activity, its biochemical features, and its role in the physiology and virulence ofP. gingivalisremain elusive. In this report, we found thatP. gingivalisencodes a neuraminidase, PG0352 (SiaPg). Transcriptional analysis showed thatPG0352is monocistronic and is regulated by a sigma70-like promoter. Biochemical analyses demonstrated that SiaPgis an exo-α-neuraminidase that cleaves glycosidic-linked sialic acids. Cryoelectron microscopy and tomography analyses revealed that thePG0352deletion mutant (ΔPG352) failed to produce an intact capsule layer. Compared to the wild type,in vitrostudies showed that ΔPG352 formed less biofilm and was less resistant to killing by the host complement.In vivostudies showed that while the wild type caused a spreading type of infection that affected multiple organs and all infected mice were killed, ΔPG352 only caused localized infection and all animals survived. Taken together, these results demonstrate that SiaPgis an important virulence factor that contributes to the biofilm formation, capsule biosynthesis, and pathogenicity ofP. gingivalis, and it can potentially serve as a new target for developing therapeutic agents againstP. gingivalisinfection.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Eduard Melief ◽  
Shilah A. Bonnett ◽  
Edison S. Zuniga ◽  
Tanya Parish

ABSTRACT The diaminoquinazoline series has good potency against Mycobacterium tuberculosis. Resistant isolates have mutations in Rv3161c, a putative dioxygenase. We carried out metabolite analysis on a wild-type strain and an Rv3161c mutant strain after exposure to a diaminoquinazoline. The parental compound was found in intracellular extracts from the mutant but not the wild type. A metabolite consistent with a monohydroxylated form was identified in the wild type. These data support the hypothesis that Rv3161c metabolizes diaminoquinazolines in M. tuberculosis.


2016 ◽  
Vol 198 (19) ◽  
pp. 2682-2691 ◽  
Author(s):  
Yi Wang ◽  
Sok Ho Kim ◽  
Ramya Natarajan ◽  
Jason E. Heindl ◽  
Eric L. Bruger ◽  
...  

ABSTRACTIn bacteria, the functions of polyamines, small linear polycations, are poorly defined, but these metabolites can influence biofilm formation in several systems. Transposon insertions in an ornithine decarboxylase (odc) gene inAgrobacterium tumefaciens, predicted to direct synthesis of the polyamine putrescine from ornithine, resulted in elevated cellulose. Null mutants forodcgrew somewhat slowly in a polyamine-free medium but exhibited increased biofilm formation that was dependent on cellulose production. Spermidine is an essential metabolite inA. tumefaciensand is synthesized from putrescine inA. tumefaciensvia the stepwise actions of carboxyspermidine dehydrogenase (CASDH) and carboxyspermidine decarboxylase (CASDC). Exogenous addition of either putrescine or spermidine to theodcmutant returned biofilm formation to wild-type levels. Low levels of exogenous spermidine restored growth to CASDH and CASDC mutants, facilitating weak biofilm formation, but this was dampened with increasing concentrations. Norspermidine rescued growth for theodc, CASDH, and CASDC mutants but did not significantly affect their biofilm phenotypes, whereas in the wild type, it stimulated biofilm formation and depressed spermidine levels. Theodcmutant produced elevated levels of cyclic diguanylate monophosphate (c-di-GMP), exogenous polyamines modulated these levels, and expression of a c-di-GMP phosphodiesterase reversed the enhanced biofilm formation. Prior work revealed accumulation of the precursors putrescine and carboxyspermidine in the CASDH and CASDC mutants, respectively, but unexpectedly, both mutants accumulated homospermidine; here, we show that this requires a homospermidine synthase (hss) homologue.IMPORTANCEPolyamines are small, positively charged metabolites that are nearly ubiquitous in cellular life. They are often essential in eukaryotes and more variably in bacteria. Polyamines have been reported to influence the surface-attached biofilm formation of several bacteria. InAgrobacterium tumefaciens, mutants with diminished levels of the polyamine spermidine are stimulated for biofilm formation, and exogenous provision of spermidine decreases biofilm formation. Spermidine is also essential forA. tumefaciensgrowth, but the related polyamine norspermidine exogenously rescues growth and does not diminish biofilm formation, revealing that the growth requirement and biofilm control are separable. Polyamine control of biofilm formation appears to function via effects on the cellular second messenger cyclic diguanylate monophosphate, regulating the transition from a free-living to a surface-attached lifestyle.


mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Andrew J. Hryckowian ◽  
Rodney A. Welch

ABSTRACTUropathogenicEscherichia coli(UPEC) is the most common causative agent of community-acquired urinary tract infection (UTI). In order to cause UTI, UPEC must endure stresses ranging from nutrient limitation to host immune components. RpoS (σS), the general stress response sigma factor, directs gene expression under a variety of inhibitory conditions. Our study ofrpoSin UPEC strain CFT073 began after we discovered anrpoS-frameshift mutation in one of our laboratory stocks of “wild-type” CFT073. We demonstrate that anrpoS-deletion mutation in CFT073 leads to a colonization defect during UTI of CBA/J mice at 48 hours postinfection (hpi). There is no difference between the growth rates of CFT073 and CFT073rpoSin urine. This indicates thatrpoSis needed for replication and survival in the host rather than being needed to address limitations imposed by urine nutrients. Consistent with previous observations inE. coliK-12, CFT073rpoSis more sensitive to oxidative stress than the wild type. We demonstrate that peroxide levels are elevated in voided urine from CFT073-infected mice compared to urine from mock-infected mice, which supports the notion that oxidative stress is generated by the host in response to UPEC. In mice that lack phagocyte oxidase, the enzyme complex expressed by phagocytes that produces superoxide, the competitive defect of CFT073rpoSin bladder colonization is lost. These results demonstrate that σSis important for UPEC survival under conditions of phagocyte oxidase-generated stress during UTI. Though σSaffects the pathogenesis of other bacterial species, this is the first work that directly implicates σSas important for UPEC pathogenesis.IMPORTANCEUPEC must cope with a variety of stressful conditions in the urinary tract during infection. RpoS (σS), the general stress response sigma factor, is known to direct the expression of many genes under a variety of stressful conditions in laboratory-adaptedE. coliK-12. Here, we show that σSis needed by the model UPEC strain CFT073 to cope with oxidative stress provided by phagocytes during infection. These findings represent the first report that implicates σSin the fitness of UPEC during infection and support the idea of the need for a better understanding of the effects of this global regulator of gene expression during UTI.


2020 ◽  
Vol 202 (23) ◽  
Author(s):  
Anastasiia N. Klimova ◽  
Steven J. Sandler

ABSTRACT Escherichia coli PriA and PriC recognize abandoned replication forks and direct reloading of the DnaB replicative helicase onto the lagging-strand template coated with single-stranded DNA-binding protein (SSB). Both PriA and PriC have been shown by biochemical and structural studies to physically interact with the C terminus of SSB. In vitro, these interactions trigger remodeling of the SSB on ssDNA. priA341(R697A) and priC351(R155A) negated the SSB remodeling reaction in vitro. Plasmid-carried priC351(R155A) did not complement priC303::kan, and priA341(R697A) has not yet been tested for complementation. Here, we further studied the SSB-binding pockets of PriA and PriC by placing priA341(R697A), priA344(R697E), priA345(Q701E), and priC351(R155A) on the chromosome and characterizing the mutant strains. All three priA mutants behaved like the wild type. In a ΔpriB strain, the mutations caused modest increases in SOS expression, cell size, and defects in nucleoid partitioning (Par−). Overproduction of SSB partially suppressed these phenotypes for priA341(R697A) and priA344(R697E). The priC351(R155A) mutant behaved as expected: there was no phenotype in a single mutant, and there were severe growth defects when this mutation was combined with ΔpriB. Analysis of the priBC mutant revealed two populations of cells: those with wild-type phenotypes and those that were extremely filamentous and Par− and had high SOS expression. We conclude that in vivo, priC351(R155A) identified an essential residue and function for PriC, that PriA R697 and Q701 are important only in the absence of PriB, and that this region of the protein may have a complicated relationship with SSB. IMPORTANCE Escherichia coli PriA and PriC recruit the replication machinery to a collapsed replication fork after it is repaired and needs to be restarted. In vitro studies suggest that the C terminus of SSB interacts with certain residues in PriA and PriC to recruit those proteins to the repaired fork, where they help remodel it for restart. Here, we placed those mutations on the chromosome and tested the effect of mutating these residues in vivo. The priC mutation completely abolished function. The priA mutations had no effect by themselves. They did, however, display modest phenotypes in a priB-null strain. These phenotypes were partially suppressed by SSB overproduction. These studies give us further insight into the reactions needed for replication restart.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Mei-Ling Han ◽  
Yan Zhu ◽  
Darren J. Creek ◽  
Yu-Wei Lin ◽  
Dovile Anderson ◽  
...  

ABSTRACTMultidrug-resistantPseudomonas aeruginosapresents a global medical challenge, and polymyxins are a key last-resort therapeutic option. Unfortunately, polymyxin resistance inP. aeruginosahas been increasingly reported. The present study was designed to define metabolic differences between paired polymyxin-susceptible and -resistantP. aeruginosastrains using untargeted metabolomics and lipidomics analyses. The metabolomes of wild-typeP. aeruginosastrain K ([PAK] polymyxin B MIC, 1 mg/liter) and its pairedpmrBmutant strains, PAKpmrB6and PAKpmrB12(polymyxin B MICs of 16 mg/liter and 64 mg/liter, respectively) were characterized using liquid chromatography-mass spectrometry, and metabolic differences were identified through multivariate and univariate statistics. PAKpmrB6and PAKpmrB12, which displayed lipid A modifications with 4-amino-4-deoxy-l-arabinose, showed significant perturbations in amino acid and carbohydrate metabolism, particularly the intermediate metabolites from 4-amino-4-deoxy-l-arabinose synthesis and the methionine salvage cycle pathways. The genomics result showed a premature termination (Y275stop) inspeE(encoding spermidine synthase) in PAKpmrB6, and metabolomics data revealed a decreased intracellular level of spermidine in PAKpmrB6compared to that in PAKpmrB12. Our results indicate that spermidine may play an important role in high-level polymyxin resistance inP. aeruginosa. Interestingly, bothpmrBmutants had decreased levels of phospholipids, fatty acids, and acyl-coenzyme A compared to those in the wild-type PAK. Moreover, the more resistant PAKpmrB12mutant exhibited much lower levels of phospholipids than the PAKpmrB6mutant, suggesting that the decreased phospholipid level was associated with polymyxin resistance. In summary, this study provides novel mechanistic information on polymyxin resistance inP. aeruginosaand highlights its impacts on bacterial metabolism.


2011 ◽  
Vol 79 (7) ◽  
pp. 2638-2645 ◽  
Author(s):  
Charlotte Michaux ◽  
Maurizio Sanguinetti ◽  
Fany Reffuveille ◽  
Yanick Auffray ◽  
Brunella Posteraro ◽  
...  

ABSTRACTPhylogenetic analysis of the crystal structure of theEnterococcus faecalisSlyA (EF_3002) transcriptional factor places it between the SlyA and MarR regulator subfamilies. Proteins of these families are often involved in the regulation of genes important for bacterial virulence and stress response. To gather evidence for the role of this putative regulator inE. faecalisbiology, we dissected the genetic organization of theslyA-EF_3001 locus and constructed aslyAdeletion mutant as well as complemented strains. Interestingly, compared to the wild-type parent, the ΔslyAmutant is more virulent in an insect infection model (Galleria mellonella), exhibits increased persistence in mouse kidneys and liver, and survives better inside peritoneal macrophages. In order to identify a possible SlyA regulon, global microarray transcriptional analysis was performed. This study revealed that theslyA-EF_3001 locus appears to be autoregulated and that 117 genes were differentially regulated in the ΔslyAmutant. In the mutant strain, 111 were underexpressed and 6 overexpressed, indicating that SlyA functions mainly as an activator of transcription.


Sign in / Sign up

Export Citation Format

Share Document