scholarly journals Effect of Copper on Methylomonas albus BG8 †

1991 ◽  
Vol 57 (4) ◽  
pp. 1261-1264 ◽  
Author(s):  
Mary Lynne Perille Collins ◽  
Lorie A. Buchholz ◽  
Charles C. Remsen
Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
C.C. Remsen

Methane, a contributor to the “greenhouse effect”, is oxidized in the natural environment by methanotrophic bacteria. As part of a comprehensive research effort, we have been examining the ultrastructure of methanotrophs. These microorganisms have complex outer cell wall structures similar to those frequently found in other chemol itho- trophic bacteria. (1,2)In our work, we have focused on the “type” strains of Methylomonas albus BG8 and Methylosinus trichosporium OB3b. Between Spurr and LR White embedding resins, we found a difference 1n the preservation of an outer cup layer of BG8 external to the peripheral membranes. Cells from the same sample embedded in Spurr consistently lacked this feature (FIG. 1). This effect was overcome by an en bloc ruthenium red (RR) protocol that resulted in successful retention of the cup layer in Spurr resin (FIG. 2). For OB3b cells, the en bloc RR protocol resulted in an exterior bead feature distinguishable in thin section (FIG. 4) that previously was seen only by SEM.


Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


1965 ◽  
Vol 13 (02) ◽  
pp. 477-483
Author(s):  
Alwin B. Bogert

SummaryExperiments were conducted to determine why different lots of Borate Buffer reagent affect the clot lysis times obtained in the fibrinolytic assay of Streptokinase. Minerals naturally occurring in distilled water were screened individually to determine their influence on lysis. Copper was found to have a very pronounced effect in this regard on the fibrinolytic system in that low levels reduce the lysis time and high levels increase it.


Author(s):  
Rizwan Ahmad Khan ◽  

This paper investigates the fresh and durability properties of the high-performance concrete by replacing cement with 15% Silica fume and simultaneously replacing fine aggregates with 25%, 50%, 75% and 100% copper slag at w/b ratio of 0.23. Five mixes were analysed and compared with the standard concrete mix. Fresh properties show an increase in the slump with the increase in the quantity of copper slag to the mix. Sorptivity, chloride penetration, UPV and carbonation results were very encouraging at 50% copper slag replacement levels. Microstructure analysis of these mixes shows the emergence of C-S-H gel for nearly all mixes indicating densification of the interfacial transition zone of the concrete.


2016 ◽  
Vol 44 (2) ◽  
pp. 156-166 ◽  
Author(s):  
Zeinab El-Bouhy ◽  
Rasha Reda ◽  
Asmaa El-Azony

2019 ◽  
pp. 111-123 ◽  
Author(s):  
P. P. Sharin ◽  
M. P. Akimova ◽  
V. I. Popov

The paper studies structure and phase characteristics of the interphase zone diamond/matrix in dressers made by thermal diffusion metallization of a diamond combined with matrix sintering based on WC–Co and Cu impregnation. The compact arrangement of chromium powder particles around diamond grains and the shielding effect of copper foil create favorable conditions for thermal diffusion metallization of diamond at matrix sintering. A metallized coating chemically bonded with diamond and consisting of chromium carbide and solid solution of cobalt in chromium phases provides a strong diamond retention in the carbide matrix. It was shown that it is formed on the surface of the diamond under the conditions specified in the experiment and the temperature – time sintering mode. The specific productivity of experimental dresser made by hybrid technology at straightening green silicon carbide grinding wheel equaled 51.50 cm3/mg exceeding that of the control dresser made without metallization of diamonds by sintering with copper impregnation by 44.66%.


Sign in / Sign up

Export Citation Format

Share Document