scholarly journals Production of Active Chimeric Pediocin AcH inEscherichia coli in the Absence of Processing and Secretion Genes from the Pediococcus pap Operon

1998 ◽  
Vol 64 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Kurt W. Miller ◽  
Robin Schamber ◽  
Yanling Chen ◽  
Bibek Ray

ABSTRACT Minimum requirements have been determined for synthesis and secretion of the Pediococcus antimicrobial peptide, pediocin AcH, in Escherichia coli. The functional mature domain of pediocin AcH (Lys+1 to Cys+44) is targeted into the E. coli sec machinery and secreted to the periplasm in active form when fused in frame to the COOH terminus of the secretory protein maltose-binding protein (MBP). The PapC-PapD specialized secretion machinery is not required for secretion of the MBP-pediocin AcH chimeric protein, indicating that inPediococcus, PapC and PapD probably are required for recognition and processing of the leader peptide rather than for translocation of the mature pediocin AcH domain across the cytoplasmic membrane. The chimeric protein displays bactericidal activity, suggesting that the NH2 terminus of pediocin AcH does not span the phospholipid bilayer in the membrane-interactive form of the molecule. However, the conserved Lys+1-Tyr-Tyr-Gly-Asn-Gly-Val+7-sequence at the NH2 terminus is important because deletion of this sequence abolishes activity. The secreted chimeric protein is released into the culture medium when expressed in a periplasmic leaky E. coli host. The MBP fusion-periplasmic leaky expression system should be generally advantageous for production and screening of the activity of bioactive peptides.

2006 ◽  
Vol 72 (6) ◽  
pp. 4154-4162 ◽  
Author(s):  
Marian Pulido ◽  
Kenji Saito ◽  
Shun-Ichi Tanaka ◽  
Yuichi Koga ◽  
Masaaki Morikawa ◽  
...  

ABSTRACT Subtilisin from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 is a member of the subtilisin family. T. kodakaraensis subtilisin in a proform (T. kodakaraensis pro-subtilisin), as well as its propeptide (T. kodakaraensis propeptide) and mature domain (T. kodakaraensis mat-subtilisin), were independently overproduced in E. coli, purified, and biochemically characterized. T. kodakaraensis pro-subtilisin was inactive in the absence of Ca2+ but was activated upon autoprocessing and degradation of propeptide in the presence of Ca2+ at 80�C. This maturation process was completed within 30 min at 80�C but was bound at an intermediate stage, in which the propeptide is autoprocessed from the mature domain (T. kodakaraensis mat-subtilisin*) but forms an inactive complex with T. kodakaraensis mat-subtilisin*, at lower temperatures. At 80�C, approximately 30% of T. kodakaraensis pro-subtilisin was autoprocessed into T. kodakaraensis propeptide and T. kodakaraensis mat-subtilisin*, and the other 70% was completely degraded to small fragments. Likewise, T. kodakaraensis mat-subtilisin was inactive in the absence of Ca2+ but was activated upon incubation with Ca2+ at 80�C. The kinetic parameters and stability of the resultant activated protein were nearly identical to those of T. kodakaraensis mat-subtilisin*, indicating that T. kodakaraensis mat-subtilisin does not require T. kodakaraensis propeptide for folding. However, only ∼5% of T. kodakaraensis mat-subtilisin was converted to an active form, and the other part was completely degraded to small fragments. T. kodakaraensis propeptide was shown to be a potent inhibitor of T. kodakaraensis mat-subtilisin* and noncompetitively inhibited its activity with a Ki of 25 � 3.0 nM at 20�C. T. kodakaraensis propeptide may be required to prevent the degradation of the T. kodakaraensis mat-subtilisin molecules that are activated later by those that are activated earlier.


1998 ◽  
Vol 64 (2) ◽  
pp. 555-563 ◽  
Author(s):  
Hirofumi Okada ◽  
Kohji Tada ◽  
Tadashi Sekiya ◽  
Kengo Yokoyama ◽  
Akinori Takahashi ◽  
...  

ABSTRACT We have isolated the genomic and cDNA clones encoding EG III (a low-molecular-mass endo-β-1,4-glucanase) gene fromTrichoderma reesei QM9414. The nucleotide sequence of the cDNA fragment was verified to contain a 702-bp open reading frame that encodes a 234-amino-acid propeptide. The deduced protein sequence has significant homologies with family H endo-β-1,4-glucanases. The 16-amino-acid N-terminal sequence was shown to function as a leader peptide for possible secretion. Northern blot analysis showed that the EG III gene transcript, with a length of about 700 bp, was expressed markedly by cellulose but not by glucose. The protein has been expressed as a mature form in Escherichia coli and as secreted forms in Saccharomyces cerevisiae and Schizosaccharomyces pombe under the control of tac, alcohol dehydrogenase (ADH1), and human cytomegalovirus promoters, respectively. The S. cerevisiae and Schizosaccharomyces pombe recombinant strains showed strong cellulolytic activities on agar plates containing carboxymethyl cellulose. The E. coli strain expressed small amounts of EG III in an active form and large amounts of EG III in an inactive form. The molecular masses of the recombinant EG IIIs were estimated to be 25, 28, and 29 kDa for E. coli, S. cerevisiae, and Schizosaccharomyces pombe, respectively, by immunoblot analysis following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Parts of the yeast recombinant EG IIIs decreased their molecular masses to 25 kDa after treatment with endoglycosidase H and α-mannosidase, suggesting that they are N glycosylated at least partly.


2020 ◽  
Author(s):  
Ryo Sato ◽  
Kosuke Minamihata ◽  
Ryutaro Ariyoshi ◽  
Hiromasa Taniguchi ◽  
Noriho Kamiya

AbstractMicrobial transglutaminase from Streptomyces mobaraensis (MTG) has been widely used in food industry and also in research and medical applications, since it can site-specifically modify proteins by the cross-linking reaction of glutamine residue and the primary amino group. The recombinant expression system of MTG in E. coli provides better accessibility for the researchers and thus can promote further utilization of MTG. Herein, we report production of active and soluble MTG in E. coli by using a chimeric protein of tobacco etch virus (TEV) protease and MTG zymogen. A chimera of TEV protease and MTG zymogen with native propeptide resulted in active MTG contaminated with cleaved propeptide due to the strong interaction between the propeptide and catalytic domain of MTG. Introduction of mutations of K9R and Y11A to the propeptide facilitated dissociation of the cleaved propeptide from the catalytic domain of MTG and active MTG without any contamination of the propeptide was obtained. The specific activity of the active MTG was 22.7±2.6 U/mg. The successful expression and purification of active MTG by using the chimera protein of TEV protease and MTG zymogen with mutations in the propeptide can advance the use of MTG and the researches using MTG mediated cross-linking reactions.


1993 ◽  
Vol 294 (1) ◽  
pp. 79-86 ◽  
Author(s):  
N F Brown ◽  
A Sen ◽  
D A Soltis ◽  
B Jones ◽  
D W Foster ◽  
...  

cDNAs corresponding to the precursor and mature forms of rat carnitine palmitoyltransferase II (CPT II) were found to be readily expressed in Escherichia coli. In both cases, catalytically active immunoreactive protein was produced and became largely membrane-associated. The precursor form of the enzyme was not proteolytically processed. Removal of 126 bp from the 5′ end of the cDNA coding region allowed expression of a truncated CPT II (lacking the N-terminal 17 residues of the mature protein), but this product was inactive. cDNAs encoding the precursor and mature forms of human CPT II resisted direct expression in E. coli. However, the impediment was overcome when the latter cDNA was ligated in-frame 3′ to sequence encoding a glutathione S-transferase. This construct yielded abundant quantities of the corresponding fusion protein, a portion of which was soluble and catalytically active. In vitro transcription and translation of the various cDNAs established that the lower mobility on SDS/PAGE of rat CPT II compared with its human counterpart (despite their identical numbers of amino acids) is an intrinsic property of the primary sequences of the proteins themselves. Also, the human cDNA was found to contain an artifactual termination signal for T3 RNA polymerase that could be bypassed by the T7 polymerase. Thus rat CPT II can be expressed in active form in E. coli with characteristics similar to those of the enzyme in mitochondria, opening the way to future location of active sites within the molecule. An alternative expression system will be needed for similar studies on human CPT II.


2000 ◽  
Vol 182 (9) ◽  
pp. 2604-2610 ◽  
Author(s):  
Gillian Newman ◽  
Elliott Crooke

ABSTRACT Given the lack of a nucleus in prokaryotic cells, the significance of spatial organization in bacterial chromosome replication is only beginning to be fully appreciated. DnaA protein, the initiator of chromosomal replication in Escherichia coli, is purified as a soluble protein, and in vitro it efficiently initiates replication of minichromosomes in membrane-free DNA synthesis reactions. However, its conversion from a replicatively inactive to an active form in vitro occurs through its association with acidic phospholipids in a lipid bilayer. To determine whether the in situ residence of DnaA protein is cytoplasmic, membrane associated, or both, we examined the cellular location of DnaA using immunogold cryothin-section electron microscopy and immunofluorescence. Both of these methods revealed that DnaA is localized at the cell membrane, further suggesting that initiation of chromosomal replication in E. coli is a membrane-affiliated event.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David Gonzalez-Perez ◽  
James Ratcliffe ◽  
Shu Khan Tan ◽  
Mary Chen May Wong ◽  
Yi Pei Yee ◽  
...  

AbstractSignal peptides and secretory carrier proteins are commonly used to secrete heterologous recombinant protein in Gram-negative bacteria. The Escherichia coli osmotically-inducible protein Y (OsmY) is a carrier protein that secretes a target protein extracellularly, and we have previously applied it in the Bacterial Extracellular Protein Secretion System (BENNY) to accelerate directed evolution. In this study, we reported the first application of random and combinatorial mutagenesis on a carrier protein to enhance total secretory target protein production. After one round of random mutagenesis followed by combining the mutations found, OsmY(M3) (L6P, V43A, S154R, V191E) was identified as the best carrier protein. OsmY(M3) produced 3.1 ± 0.3 fold and 2.9 ± 0.8 fold more secretory Tfu0937 β-glucosidase than its wildtype counterpart in E. coli strains BL21(DE3) and C41(DE3), respectively. OsmY(M3) also produced more secretory Tfu0937 at different cultivation temperatures (37 °C, 30 °C and 25 °C) compared to the wildtype. Subcellular fractionation of the expressed protein confirmed the essential role of OsmY in protein secretion. Up to 80.8 ± 12.2% of total soluble protein was secreted after 15 h of cultivation. When fused to a red fluorescent protein or a lipase from Bacillus subtillis, OsmY(M3) also produced more secretory protein compared to the wildtype. In this study, OsmY(M3) variant improved the extracellular production of three proteins originating from diverse organisms and with diverse properties, clearly demonstrating its wide-ranging applications. The use of random and combinatorial mutagenesis on the carrier protein demonstrated in this work can also be further extended to evolve other signal peptides or carrier proteins for secretory protein production in E. coli.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masuzu Kikuchi ◽  
Keiichi Kojima ◽  
Shin Nakao ◽  
Susumu Yoshizawa ◽  
Shiho Kawanishi ◽  
...  

AbstractMicrobial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.


2010 ◽  
Vol 5 (6) ◽  
pp. 827-830
Author(s):  
Georgi Slavchev ◽  
Nadya Markova

AbstractUropathogenic strains of E. coli isolated from urine of patients with urinary tract infections were tested for antibiotic sensitivity using bio-Merieux kits and ATB-UR 5 expression system. The virulence of strains was evaluated by serum bactericidal assay, macrophage “killing” and bacterial adhesive tests. Survival capability of strains was assessed under starvation in saline. The results showed that quinolone-resistant uropathogenic strains of E. coli exhibit significantly reduced adhesive potential but relatively high resistance to serum and macrophage bactericidity. In contrast to laboratory strains, the quinolone-resistant uropathogenic clinical isolate demonstrated increased viability during starvation in saline. Our study suggests that quinolone-resistant uropathogenic strains are highly adaptable clones of E. coli, which can exhibit compensatory viability potential under unfavorable conditions. The clinical occurrence of such phenotypes is likely to contribute to the survival, persistence and spread strategy of resistant bacteria.


2006 ◽  
Vol 188 (6) ◽  
pp. 2163-2172 ◽  
Author(s):  
Paul W. King ◽  
Matthew C. Posewitz ◽  
Maria L. Ghirardi ◽  
Michael Seibert

ABSTRACT Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert, and M. L. Ghirardi, J. Biol. Chem. 279:25711-25720, 2004). Previous efforts to study [FeFe] hydrogenase maturation in Escherichia coli by coexpression of C. reinhardtii HydEF and HydG and the HydA1 [FeFe] hydrogenase were hindered by instability of the hydEF and hydG expression clones. A more stable [FeFe] hydrogenase expression system has been achieved in E. coli by cloning and coexpression of hydE, hydF, and hydG from the bacterium Clostridium acetobutylicum. Coexpression of the C. acetobutylicum maturation proteins with various algal and bacterial [FeFe] hydrogenases in E. coli resulted in purified enzymes with specific activities that were similar to those of the enzymes purified from native sources. In the case of structurally complex [FeFe] hydrogenases, maturation of the catalytic sites could occur in the absence of an accessory iron-sulfur cluster domain. Initial investigations of the structure and function of the maturation proteins HydE, HydF, and HydG showed that the highly conserved radical-SAM domains of both HydE and HydG and the GTPase domain of HydF were essential for achieving biosynthesis of active [FeFe] hydrogenases. Together, these results demonstrate that the catalytic domain and a functionally complete set of Hyd maturation proteins are fundamental to achieving biosynthesis of catalytic [FeFe] hydrogenases.


2014 ◽  
Vol 185 ◽  
pp. S70
Author(s):  
Boguslaw Lupa ◽  
Krzysztof Stawujak ◽  
Igor Rozanski ◽  
Justyna Stec-Niemczyk

Sign in / Sign up

Export Citation Format

Share Document