scholarly journals Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria

2004 ◽  
Vol 70 (1) ◽  
pp. 52-60 ◽  
Author(s):  
Ronald S. Oremland ◽  
Mitchell J. Herbel ◽  
Jodi Switzer Blum ◽  
Sean Langley ◽  
Terry J. Beveridge ◽  
...  

ABSTRACT Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, ∼300 nm) of Se(0) having monoclinic crystalline structures. Intracellular packets of Se(0) were also noted. The number of intracellular Se(0) packets could be reduced by first growing cells with nitrate as the electron acceptor and then adding selenite ions to washed suspensions of the nitrate-grown cells. This resulted in the formation of primarily extracellular Se nanospheres. After harvesting and cleansing of cellular debris, we observed large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species. The spectral properties in turn differed substantially from those of amorphous Se(0) formed by chemical oxidation of H2Se and of black, vitreous Se(0) formed chemically by reduction of selenite with ascorbate. The microbial synthesis of Se(0) nanospheres results in unique, complex, compacted nanostructural arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes involved in the dissimilatory reduction that are subtly different in different microbes. Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3831 ◽  
Author(s):  
Zixin Ju ◽  
Jie Sun ◽  
Yanping Liu

This paper presents a comparative study on natural indigo and indirubin in terms of molecular structures and spectral properties by using both computational and experimental methods. The spectral properties were analyzed with Fourier transform infrared (FTIR), Raman, UV-Visible, and fluorescence techniques. The density functional theory (DFT) method with B3LYP using 6-311G(d,p) basis set was utilized to obtain their optimized geometric structures and calculate the molecular electrostatic potential, frontier molecular orbitals, FTIR, and Raman spectra. The single-excitation configuration interaction (CIS), time-dependent density functional theory (TD-DFT), and polarization continuum model (PCM) were used to optimize the excited state structure and calculate the UV-Visible absorption and fluorescence spectra of the two molecules at B3LYP/6-311G(d,p) level. The results showed that all computational spectra agreed well with the experimental results. It was found that the same vibrational mode presents a lower frequency in indigo than that in indirubin. The frontier molecular orbital analysis demonstrated that the UV-Visible absorption and fluorescence bands of indigo and indirubin are mainly derived from π → π* transition. The results also implied that the indigo molecule is more conjugated and planar than indirubin, thereby exhibiting a longer maximum absorption wavelength and stronger fluorescence peak.


1998 ◽  
Vol 76 (12) ◽  
pp. 1910-1915 ◽  
Author(s):  
Robert A McClelland ◽  
Victoria E Licence ◽  
John P Richard ◽  
Kathleen B Williams ◽  
Shrong-Shi Lin

4-Methoxybenzyl cations bearing α-(N,N-dimethylcarbamoyl) and α-(N,N-dimethylthiocarbamoyl) substituents have been generated photochemically upon irradiation of precursors with pentafluorobenzoate or 4-methoxybenzoate leaving groups. The ions have been observed with flash photolysis in 40:60 acetonitrile:water and in 50:50 methanol:water, and rate constants were measured for their decay in solvent alone and for their capture by azide ion. The cations so studied and their lifetimes in 40% acetonitrile are 6, ArC+H-CONMe2, 0.6 μs; 2, ArC+H-CSNMe2, 7 ms; and 4, ArC+(CH3)-CSMe2, 6 ms, where Ar = 4-MeOC6H4. The cation 4 reacts with solvent by elimination of a proton from the α-methyl group, and the rate constant for solvent addition must be less than 1 s-1. The CSNMe2 substituted cations are 105-107-fold longer lived than analogs where the thioamide group has been replaced with an α-methyl. The UV-visible absorption spectra of these two cations also show significant differences from those of typical 4-methoxybenzyl cations. Thus, both the lifetimes and spectra point to a strong interaction of the benzylic centre with the thioamide group. Key words: flash photolysis, thiocarbamoyl stabilized carbocation, photosolvolysis.


RSC Advances ◽  
2016 ◽  
Vol 6 (88) ◽  
pp. 84712-84721 ◽  
Author(s):  
Maria A. Cardona ◽  
Marina Kveder ◽  
Ulrich Baisch ◽  
Michael R. Probert ◽  
David C. Magri

Two phenyl β-aminobisulfonate ligands characterised by UV-visible absorption, EPR and 1H NMR spectroscopy exhibit evidence for binding with Cu2+ in water and methanol.


2011 ◽  
Vol 197-198 ◽  
pp. 1153-1156
Author(s):  
Ning Chen ◽  
Ya Bin Li

The characteristics of host-guest complexes between cucurbit[n]uril (CB [n]) and phenylalanine were investigated by UV-visible absorption spectroscopy in acetate buffer solution at room temperature. It was found that the UV-visible absorption increased steadily with constantly dropping the high concentration of cucurbit[6]uril (CB [6]) and cucurbit[8]uril (CB [8]) in the phenylalanine solution which indicates that there are some interaction betweenCB [n] and phenylalanine.Then CB [6] and phenylalanine at molar ratio of 1:1 to weigh while CB [8] and phenylalanine at molar ratio of 1:2, respectively, are both demonstrated by 1H NMR spectra. 1H NMR spectrum of complexes was obtained, indicating an enthalpic driving force for host-guest complexes. The possible interaction mechanism and inclusion mode were also discussed. This work may extend the application range of CB [n] in supramolecular and pharmaceutical analysis.


1991 ◽  
Vol 24 (10) ◽  
pp. 1265-1273 ◽  
Author(s):  
Bronislaw Marciniak ◽  
Halina Kozubek ◽  
Bogumil Brzezinski

2007 ◽  
Vol 353-358 ◽  
pp. 2163-2166
Author(s):  
Ming Yang ◽  
Guo Qing Zhou ◽  
Jiang Guo Zhao ◽  
Zhan Jun Li

Nanocubes, monodispersed nanocrystals and nanospheres of Au have been prepared by a simple reaction between HAuCl4·4H2O, NaOH and NH2OH·HCl in the presence of gelatin. The role of gelatin and the affection of pH in producing the nanoparticles of Au were discussed. The products were characterized by X-ray powder diffraction, transmission electron microscopy, and UV-visible absorption spectroscopy. The sizes of the monodispersed nanocrystals of Au were estimated by Debye-Scherrer formula according to XRD spectrum.


Sign in / Sign up

Export Citation Format

Share Document