scholarly journals High-Throughput Transposon Mutagenesis of Corynebacterium glutamicum and Construction of a Single-Gene Disruptant Mutant Library

2006 ◽  
Vol 72 (5) ◽  
pp. 3750-3755 ◽  
Author(s):  
Nobuaki Suzuki ◽  
Naoko Okai ◽  
Hiroshi Nonaka ◽  
Yota Tsuge ◽  
Masayuki Inui ◽  
...  

ABSTRACT A simple and high-throughput transposon-mediated mutagenesis system employing two different types of transposons in combination with direct genomic DNA amplification and thermal asymmetric interlaced PCR (TAIL-PCR) was developed. Each of the two minitransposons based on IS31831 (ISL3 family) and Tn5 (IS4 family) was integrated into the Corynebacterium glutamicum R genome. By using BLAST and Perl, transposon insertion locations were automatically identified based on the sequences of TAIL-PCR products of mutant cells. Insertion locations of 18,000 mutants were analyzed, and a comprehensive insertion library covering nearly 80% of the 2,990 open reading frames of C. glutamicum R was generated. Eight thousand of the mutants, exhibiting disruption in 2,330 genes, survived on complex medium under normal laboratory conditions, indicating that the genes were not essential for cell survival. Of the 2,330 genes, 30 exhibited high similarity to essential genes of Escherichia coli or Bacillus subtilis. This approach could be useful in furthering genetic understanding of cellular life and facilitating the functional analysis of microorganisms.

2006 ◽  
Vol 69 (9) ◽  
pp. 2280-2284 ◽  
Author(s):  
JOHANNA LEGGATE ◽  
BURTON W. BLAIS

The detection of PCR products by DNA hybridization techniques can suffer from inhibition of the amplification process by sample matrix components. We have designed a simple internal control system for PCR based on the incorporation of a primer pair with complementary 3′ ends, resulting in the generation of a unique “primer-dimer” detectable by hybridization with a specific capture probe immobilized on polyester cloth as part of an array of amplicon-specific probes. The inclusion of this primer pair did not adversely affect the amplification and subsequent detection of target gene sequences by hybridization with immobilized probes in either single gene amplification or multiplex PCR systems. The failure to amplify target gene sequences because of the presence of inhibitors was mirrored by a failure to amplify the internal control primer-dimer, demonstrating the efficacy of this system in identifying the presence of DNA amplification inhibitors.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Ainur Ismagul ◽  
Nannan Yang ◽  
Elina Maltseva ◽  
Gulnur Iskakova ◽  
Inna Mazonka ◽  
...  

2021 ◽  
Author(s):  
Hanna Retallack ◽  
Katerina D. Popova ◽  
Matthew T. Laurie ◽  
Sara Sunshine ◽  
Joseph L. DeRisi

Narnaviruses are RNA viruses detected in diverse fungi, plants, protists, arthropods and nematodes. Though initially described as simple single-gene non-segmented viruses encoding RNA-dependent RNA polymerase (RdRp), a subset of narnaviruses referred to as “ambigrammatic” harbor a unique genomic configuration consisting of overlapping open reading frames (ORFs) encoded on opposite strands. Phylogenetic analysis supports selection to maintain this unusual genome organization, but functional investigations are lacking. Here, we establish the mosquito-infecting Culex narnavirus 1 (CxNV1) as a model to investigate the functional role of overlapping ORFs in narnavirus replication. In CxNV1, a reverse ORF without homology to known proteins covers nearly the entire 3.2 kb segment encoding the RdRp. Additionally, two opposing and nearly completely overlapping novel ORFs are found on the second putative CxNV1 segment, the 0.8 kb “Robin” RNA. We developed a system to launch CxNV1 in a naïve mosquito cell line, then showed that functional RdRp is required for persistence of both segments, and an intact reverse ORF is required on the RdRp segment for persistence. Mass spectrometry of persistently CxNV1-infected cells provided evidence for translation of this reverse ORF. Finally, ribosome profiling yielded a striking pattern of footprints for all four CxNV1 RNA strands that was distinct from actively-translating ribosomes on host mRNA or co-infecting RNA viruses. Taken together, these data raise the possibility that the process of translation itself is important for persistence of ambigrammatic narnaviruses, potentially by protecting viral RNA with ribosomes, thus suggesting a heretofore undescribed viral tactic for replication and transmission. IMPORTANCE Fundamental to our understanding of RNA viruses is a description of which strand(s) of RNA are transmitted as the viral genome, relative to which encode the viral proteins. Ambigrammatic narnaviruses break the mold. These viruses, found broadly in fungi, plants, and insects, have the unique feature of two overlapping genes encoded on opposite strands, comprising nearly the full length of the viral genome. Such extensive overlap is not seen in other RNA viruses, and comes at the cost of reduced evolutionary flexibility in the sequence. The present study is motivated by investigating the benefits which balance that cost. We show for the first time a functional requirement for the ambigrammatic genome configuration in Culex narnavirus 1, which suggests a model for how translation of both strands might benefit this virus. Our work highlights a new blueprint for viral persistence, distinct from strategies defined by canonical definitions of the coding strand.


2008 ◽  
Vol 80 (10) ◽  
pp. 3522-3529 ◽  
Author(s):  
Palani Kumaresan ◽  
Chaoyong James Yang ◽  
Samantha A. Cronier ◽  
Robert G. Blazej ◽  
Richard A. Mathies

2020 ◽  
Vol 48 (8) ◽  
pp. 4585-4600
Author(s):  
Gabriel A Suárez ◽  
Kyle R Dugan ◽  
Brian A Renda ◽  
Sean P Leonard ◽  
Lakshmi Suryateja Gangavarapu ◽  
...  

Abstract One goal of synthetic biology is to improve the efficiency and predictability of living cells by removing extraneous genes from their genomes. We demonstrate improved methods for engineering the genome of the metabolically versatile and naturally transformable bacterium Acinetobacter baylyi ADP1 and apply them to a genome streamlining project. In Golden Transformation, linear DNA fragments constructed by Golden Gate Assembly are directly added to cells to create targeted deletions, edits, or additions to the chromosome. We tested the dispensability of 55 regions of the ADP1 chromosome using Golden Transformation. The 18 successful multiple-gene deletions ranged in size from 21 to 183 kb and collectively accounted for 23.4% of its genome. The success of each multiple-gene deletion attempt could only be partially predicted on the basis of an existing collection of viable ADP1 single-gene deletion strains and a new transposon insertion sequencing (Tn-Seq) dataset that we generated. We further show that ADP1’s native CRISPR/Cas locus is active and can be retargeted using Golden Transformation. We reprogrammed it to create a CRISPR-Lock, which validates that a gene has been successfully removed from the chromosome and prevents it from being reacquired. These methods can be used together to implement combinatorial routes to further genome streamlining and for more rapid and assured metabolic engineering of this versatile chassis organism.


1990 ◽  
Vol 3 (1) ◽  
pp. 111 ◽  
Author(s):  
RH Crozier

Mitochondrial DNA (mtDNA) is clonally and maternally inherited in all animals and in most plants. Mitochondrial gene content is similar although not identical in all eukaryotes. Because of these characteristics, mtDNA has a number of features useful to systematists for all levels of evolutionary divergence. Clonal inheritance leads to unusual confidence in constructing gene trees which are useful in population-level studies, such as in the detection of population subdivision. Maternal inheritance presents the opportunity to distinguish paternal from maternal gene flow. The clonal, or single-gene, nature of mtDNA inheritance leads to consideration of the expected convergence between gene- and species-trees. For closely related populations or species, it is desirable to use several genes to be sure that the correct species-tree is discovered; this means that, although mtDNA will be the most precise guide to the species tree because of its lower effective population size, nuclear genes should also be used in such studies. Although restriction fragment length polymorphisms dominated the field until recently, sequencing following DNA amplification using the polymerase chain reaction is now easier and opens up the use of preserved specimens to molecular systematists. Because mitochondria1 genes evolve at different rates, one of appropriate rate can be selected for almost any phylogenetic problem.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Michael Baym ◽  
Lev Shaket ◽  
Isao A. Anzai ◽  
Oluwakemi Adesina ◽  
Buz Barstow

Abstract Whole-genome knockout collections are invaluable for connecting gene sequence to function, yet traditionally, their construction has required an extraordinary technical effort. Here we report a method for the construction and purification of a curated whole-genome collection of single-gene transposon disruption mutants termed Knockout Sudoku. Using simple combinatorial pooling, a highly oversampled collection of mutants is condensed into a next-generation sequencing library in a single day, a 30- to 100-fold improvement over prior methods. The identities of the mutants in the collection are then solved by a probabilistic algorithm that uses internal self-consistency within the sequencing data set, followed by rapid algorithmically guided condensation to a minimal representative set of mutants, validation, and curation. Starting from a progenitor collection of 39,918 mutants, we compile a quality-controlled knockout collection of the electroactive microbe Shewanella oneidensis MR-1 containing representatives for 3,667 genes that is functionally validated by high-throughput kinetic measurements of quinone reduction.


2019 ◽  
Vol 47 (7) ◽  
pp. 3640-3657 ◽  
Author(s):  
Brianna L Tylec ◽  
Rachel M Simpson ◽  
Laura E Kirby ◽  
Runpu Chen ◽  
Yijun Sun ◽  
...  

Abstract Most mitochondrial mRNAs in kinetoplastids require extensive uridine insertion/deletion editing to generate translatable open reading frames. Editing is specified by trans-acting gRNAs and involves a complex machinery including basal and accessory factors. Here, we utilize high-throughput sequencing to analyze editing progression in two minimally edited mRNAs that provide a simplified system due their requiring only two gRNAs each for complete editing. We show that CYb and MURF2 mRNAs exhibit barriers to editing progression that differ from those previously identified for pan-edited mRNAs, primarily at initial gRNA usage and gRNA exchange. We demonstrate that mis-edited junctions arise through multiple pathways including mis-alignment of cognate gRNA, incorrect and sometimes promiscuous gRNA utilization and inefficient gRNA anchoring. We then examined the roles of accessory factors RBP16 and MRP1/2 in maintaining edited CYb and MURF2 populations. RBP16 is essential for initiation of CYb and MURF2 editing, as well as MURF2 editing progression. In contrast, MRP1/2 stabilizes both edited mRNA populations, while further promoting progression of MURF2 mRNA editing. We also analyzed the effects of RNA Editing Substrate Binding Complex components, TbRGG2 and GAP1, and show that both proteins modestly impact progression of editing on minimally edited mRNAs, suggesting a novel function for GAP1.


Sign in / Sign up

Export Citation Format

Share Document