scholarly journals Peptidoglycan Induces Mobilization of the Surface Marker for Activation Marker CD66b in Human Neutrophils but Not in Eosinophils

2003 ◽  
Vol 10 (3) ◽  
pp. 485-488 ◽  
Author(s):  
Eva Mattsson ◽  
Terese Persson ◽  
Pia Andersson ◽  
Jan Rollof ◽  
Arne Egesten

ABSTRACT Peptidoglycan from Staphylococcus aureus mobilized CD66b in human neutrophils but did not upregulate surface activation markers in eosinophils. In addition, Toll-like receptor 2, implicated in the recognition of peptidoglycan, was detected on the surface of resting neutrophils but not on eosinophils. These findings suggest roles for neutrophils but not eosinophils in innate recognition of peptidoglycan.

Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 692
Author(s):  
Giulia Franzoni ◽  
Antonio Anfossi ◽  
Chiara Grazia De Ciucis ◽  
Samanta Mecocci ◽  
Tania Carta ◽  
...  

Toll-like receptor 2 (TLR2) ligands are attracting increasing attention as prophylactic and immunotherapeutic agents against pathogens and tumors. We previously observed that a synthetic diacylated lipopeptide based on a surface protein of Mycoplasma agalactiae (Mag-Pam2Cys) strongly activated innate immune cells, including porcine monocyte-derived macrophages (moMΦ). In this study, we utilized confocal microscopy, flow cytometry, multiplex cytokine ELISA, and RT-qPCR to conduct a comprehensive analysis of the effects of scalar doses of Mag-Pam2Cys on porcine moMΦ. We observed enhanced expression of activation markers (MHC class I, MHC class II DR, CD25), increased phagocytotic activity, and release of IL-12 and proinflammatory cytokines. Mag-Pam2Cys also upregulated the gene expression of several IFN-α subtypes, p65, NOS2, and molecules with antimicrobial activities (CD14, beta defensin 1). Overall, our data showed that Mag-Pam2Cys polarized porcine macrophages towards a proinflammatory antimicrobial phenotype. However, Mag-Pam2Cys downregulated the expression of IFN-α3, six TLRs (TLR3, -4, -5, -7, -8, -9), and did not interfere with macrophage polarization induced by the immunosuppressive IL-10, suggesting that the inflammatory activity evoked by Mag-Pam2Cys could be regulated to avoid potentially harmful consequences. We hope that our in vitro results will lay the foundation for the further evaluation of this diacylated lipopeptide as an immunopotentiator in vivo.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Arnaud Kengmo Tchoupa ◽  
Andreas Peschel

ABSTRACT Staphylococcus aureus is a major pathogen, which colonizes one in three otherwise healthy humans. This significant spread of S. aureus is largely due to its ability to circumvent innate immune responses, including antimicrobial fatty acids (AFAs) on the skin and in nasal secretions. In response to AFAs, S. aureus swiftly induces resistance mechanisms, which have yet to be completely elucidated. Here, we identify membrane vesicle (MV) release as a resistance strategy used by S. aureus to sequester host-specific AFAs. MVs protect S. aureus against a wide array of AFAs. Strikingly, beside MV production, S. aureus modulates MV composition upon exposure to AFAs. MVs purified from bacteria grown in the presence of linoleic acid display a distinct protein content and are enriched in lipoproteins, which strongly activate Toll-like receptor 2 (TLR2). Cumulatively, our findings reveal the protective capacities of MVs against AFAs, which are counteracted by an increased TLR2-mediated innate immune response. IMPORTANCE The nares of one in three humans are colonized by Staphylococcus aureus. In these environments, and arguably on all mucosal surfaces, bacteria encounter fatty acids with antimicrobial properties. Our study uncovers that S. aureus releases membrane vesicles (MVs) that act as decoys to protect the bacterium against antimicrobial fatty acids (AFAs). The AFA-neutralizing effects of MVs were neither strain specific nor restricted to one particular AFA. Hence, MVs may represent “public goods” playing an overlooked role in shaping bacterial communities in AFA-rich environments such as the skin and nose. Intriguingly, in addition to MV biogenesis, S. aureus modulates MV composition in response to exposure to AFAs, including an increased release of lipoproteins. These MVs strongly stimulate the innate immunity via Toll-like receptor 2 (TLR2). TLR2-mediated inflammation, which helps to fight infections, may exacerbate inflammatory disorders like atopic dermatitis. Our study highlights intricate immune responses preventing infections from colonizing bacteria.


2005 ◽  
Vol 73 (3) ◽  
pp. 1847-1851 ◽  
Author(s):  
Bruno González-Zorn ◽  
Jose P. M. Senna ◽  
Laurence Fiette ◽  
Spencer Shorte ◽  
Aurélie Testard ◽  
...  

ABSTRACT Nasal carriage is a major risk factor for Staphylococcus aureus infection, especially for methicillin-resistant strains (MRSA). Using a mouse model of nasal carriage, we have compared several S. aureus strains and demonstrated increased colonization levels by MRSA in cystic fibrosis transmembrane conductance regulator-deficient mice and Toll-like receptor 2 (TLR2)-deficient mice but not TLR4-deficient mice.


2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Hua Yao ◽  
Hong Zhang ◽  
Kai Lan ◽  
Hong Wang ◽  
Yufeng Su ◽  
...  

ABSTRACT Insights into the host-microbial virulence factor interaction, especially the immune signaling mechanisms, could provide novel prevention and treatment options for pneumococcal diseases. Streptococcus pneumoniae endopeptidase O (PepO) is a newly discovered and ubiquitously expressed pneumococcal virulence protein. A PepO-mutant strain showed impaired adherence to and invasion of host cells compared with the isogenic wild-type strain. It is still unknown whether PepO is involved in the host defense response to pneumococcal infection. Here, we demonstrated that PepO could enhance phagocytosis of Streptococcus pneumoniae and Staphylococcus aureus by peritoneal exudate macrophages (PEMs). Further studies showed that PepO stimulation upregulated the expression of microRNA-155 (miR-155) in PEMs in a time- and dose-dependent manner. PepO-induced enhanced phagocytosis was decreased in cells transfected with an inhibitor of miR-155, while it was increased in cells transfected with a mimic of miR-155. We also revealed that PepO-induced upregulation of miR-155 in PEMs was mediated by Toll-like receptor 2 (TLR2)–NF-κB signaling and that the increased expression of miR-155 downregulated expression of SHIP1. Taken together, these results indicate that PepO induces upregulation of miR-155 in PEMs, contributing to enhanced phagocytosis and host defense response to pneumococci and Staphylococcus aureus.


2005 ◽  
Vol 73 (11) ◽  
pp. 7428-7435 ◽  
Author(s):  
Tammy Kielian ◽  
Anessa Haney ◽  
Patrick M. Mayes ◽  
Sarita Garg ◽  
Nilufer Esen

ABSTRACT Toll-like receptor 2 (TLR2) is a pattern recognition receptor (PRR) that plays an important role in innate immune recognition of conserved structural motifs on a wide array of pathogens, including Staphylococcus aureus. To ascertain the functional significance of TLR2 in the context of central nervous system (CNS) parenchymal infection, we evaluated the pathogenesis of S. aureus-induced experimental brain abscess in TLR2 knockout (KO) and wild-type (WT) mice. The expression of several proinflammatory mediators, including inducible nitric oxide synthase, tumor necrosis factor alpha, and macrophage inflammatory protein-2, was significantly attenuated in brain abscesses of TLR2 KO mice compared to WT mice during the acute phase of infection. Conversely, interleukin-17 (IL-17), a cytokine produced by activated and memory T cells, was significantly elevated in lesions of TLR2 KO mice, suggesting an association between innate and adaptive immunity in brain abscess. Despite these differences, brain abscess severity in TLR2 KO and WT animals was similar, with comparable mortality rates, bacterial titers, and blood-brain barrier permeability, implying a role for alternative PRRs. Expression of the phagocytic PRRs macrophage scavenger receptor type AI/AII and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was increased in brain abscesses of both TLR2 KO and WT mice compared to uninfected animals. However, LOX-1 induction in brain abscesses of TLR2 KO mice was significantly attenuated compared to WT animals, revealing that the TLR2-dependent signal(s) influence LOX-1 expression. Collectively, these findings reveal the complex nature of gram-positive bacterial recognition in the CNS which occurs, in part, through engagement of TLR2 and highlight the importance of receptor redundancy for S. aureus detection in the CNS.


Sign in / Sign up

Export Citation Format

Share Document