scholarly journals Evaluation of the Recombinant VlsE-Based Liaison Chemiluminescence Immunoassay for Detection of Borrelia burgdorferi and Diagnosis of Lyme Disease

2008 ◽  
Vol 15 (12) ◽  
pp. 1796-1804 ◽  
Author(s):  
Thomas B. Ledue ◽  
Marilyn F. Collins ◽  
John Young ◽  
Martin E. Schriefer

ABSTRACT Recent efforts to improve the serologic diagnosis of Lyme disease have included the use of a synthetic peptide (C6) that reproduces the sequence of invariable region 6 of VlsE, the variable surface antigen of Borrelia burgdorferi. In the present study, the diagnostic performance of DiaSorin's recombinant VlsE-based chemiluminescence immunoassay in 1,947 human serum samples was evaluated. Sensitivity was determined using two serum panels from the CDC. For panel I, we observed sensitivities of 68.4% and 75.6% for subjects with early, localized (n = 19) or disseminated (n = 41) disease, respectively. For panel II, we observed sensitivities of 61.5% and 100% for subjects with early (n = 26) or late-stage (n = 11) disease, respectively. We observed a specificity of 99.5% for healthy donors (n = 600) living either in regions of the United States where the disease is endemic or in regions where it is not endemic. Overall, specificity among 207 potentially cross-reactive sera from subjects who had other spirochetal infections, nonspirochetal infections including bacterial and viral infections, or autoimmune or neurologic disease; who were positive for rheumatoid factor or anti-mouse antibodies; or who had been previously vaccinated for Lyme disease was 93.7%. In a direct comparison of 1,038 prospectively collected samples for Lyme disease testing we observed a relative sensitivity of 70%, a relative specificity of 99.1%, and an overall agreement of 97.1% between the DiaSorin recombinant VlsE chemiluminescence immunoassay and the Immunetics peptide-based C6 enzyme-linked immunosorbent assay.

1999 ◽  
Vol 37 (12) ◽  
pp. 3990-3996 ◽  
Author(s):  
Fang Ting Liang ◽  
Allen C. Steere ◽  
Adriana R. Marques ◽  
Barbara J. B. Johnson ◽  
James N. Miller ◽  
...  

VlsE, the variable surface antigen of Borrelia burgdorferi, contains an immunodominant conserved region named IR6. In the present study, the diagnostic performance of a peptide enzyme-linked immunosorbent assay (ELISA) based on a 26-mer synthetic peptide (C6) with the IR6 sequence was explored. Sensitivity was assessed with serum samples (n = 210) collected from patients with clinically defined Lyme disease at the acute (early localized or early disseminated disease), convalescent, or late disease phase. The sensitivities for acute-, convalescent-, and late-phase specimens were 74% (29 of 39), 85 to 90% (34 of 40 to 35 of 39), and 100% (59 of 59), respectively. Serum specimens from early neuroborreliosis patients were 95% positive (19 of 20), and those from an additional group of patients with posttreatment Lyme disease syndrome yielded a sensitivity of 62% (8 of 13). To assess the specificity of the peptide ELISA, 77 serum samples from patients with other spirochetal or chronic infections, autoimmune diseases, or neurologic diseases and 99 serum specimens from hospitalized patients in an area where Lyme disease is not endemic were examined. Only two potential false positives from the hospitalized patients were found, and the overall specificity was 99% (174 of 176). Precision, which was assessed with a panel of positive and negative serum specimens arranged in blinded duplicates, was 100%. Four serum samples with very high anti-OspA antibody titers obtained from four monkeys given the OspA vaccine did not react with the C6 peptide. This simple, sensitive, specific, and precise ELISA may contribute to alleviate some of the remaining problems in Lyme disease serodiagnosis. Because of its synthetic peptide base, it will be inexpensive to manufacture. It also will be applicable to serum specimens from OspA-vaccinated subjects.


2000 ◽  
Vol 38 (11) ◽  
pp. 4160-4166 ◽  
Author(s):  
Fang Ting Liang ◽  
Richard H. Jacobson ◽  
Reinhard K. Straubinger ◽  
Amy Grooters ◽  
Mario T. Philipp

Sera collected from dogs experimentally infected withBorrelia burgdorferi by tick inoculation were analyzed for an antibody response to each of the six invariable regions (IRs; i.e., IR1 to IR6) of VlsE, the variable surface antigen of B. burgdorferi. Six synthetic peptides (C1 to C6), which reproduced the six IR sequences were used as peptide-based, enzyme-linked immunosorbent assay (ELISA) antigens. Two IRs, IR2 and IR6, were found to be immunodominant. Studies with serially collected serum samples from experimentally infected dogs revealed that the antibody response to IR6 appears earlier and is stronger than that to IR2. Thus, the IR6 sequence alone appeared to be sufficient for serodiagnosis. When C6 alone was used as antigen, the peptide-based ELISA was positive in 7 of 23 dogs (30%) as early as 3 weeks postinfection. All dogs (n = 33) became strongly positive 1 or 2 weeks later, and this response persisted for the entire study, which lasted for 69 weeks. Of 55 sera submitted by veterinarians from dogs suspected of having Lyme disease, 19 were also positive by the C6 ELISA, compared to 20 positives detected by immunoblot analysis using cultured B. burgdorferi lysates as antigen. The sensitivity of using C2 and C6 together for detecting specific antibody in both experimentally infected and clinically diagnosed dogs was not better than sensitivity with C6 alone, confirming that C6 suffices as a diagnostic probe. Moreover, the C6 ELISA yielded 100% specificity with serum samples collected from 70 healthy dogs, 14 dogs with infections other than B. burgdorferi, and 15 animals vaccinated with either outer surface protein A, whole-spirochete vaccines, or the common puppy-vaccines. Therefore, this C6 ELISA was both sensitive and specific for the serodiagnosis of canine Lyme disease and could be used with vaccinated dogs.


2001 ◽  
Vol 69 (5) ◽  
pp. 3224-3231 ◽  
Author(s):  
Fang Ting Liang ◽  
Lisa C. Bowers ◽  
Mario T. Philipp

ABSTRACT VlsE, the variable surface antigen of Borrelia burgdorferi, contains two invariable domains located at the amino and carboxyl terminal ends, respectively, and a central variable domain. In this study, both immunogenicity and antigenic conservation of the C-terminal invariable domain were assessed. Mouse antiserum to a 51-mer synthetic peptide (Ct) which reproduced the entire sequence of the C-terminal invariable domain of VlsE from B. burgdorferi strain B31 was reacted on immunoblots with whole-cell lysates extracted from spirochetes of 12 strains from the B. burgdorferi sensu lato species complex. The antiserum recognized only VlsE from strain B31, indicating that epitopes of this domain differed among these strains. When Ct was used as enzyme-linked immunosorbent assay (ELISA) antigen, all of the seven monkeys and six mice that were infected with B31 spirochetes produced a strong antibody response to this peptide, indicating that the C-terminal invariable domain is immunodominant. None of 12 monkeys and only 11 of 26 mice that were infected with strains other than B31 produced a detectable anti-Ct response, indicating a limited antigenic conservation of this domain among these strains. Twenty-six of 33 dogs that were experimentally infected by tick inoculation were positive by the Ct ELISA, while only 5 of 18 serum samples from dogs clinically diagnosed with Lyme disease contained detectable anti-Ct antibody. Fifty-seven of 64 serum specimens that were collected from American patients with Lyme disease were positive by the Ct ELISA, while only 12 of 21 European samples contained detectable anti-Ct antibody. In contrast, antibody to the more conserved invariable region IR6 of VlsE was present in all of these dog and human serum samples.


2013 ◽  
Vol 20 (4) ◽  
pp. 474-481 ◽  
Author(s):  
Paul M. Arnaboldi ◽  
Rudra Seedarnee ◽  
Mariya Sambir ◽  
Steven M. Callister ◽  
Josephine A. Imparato ◽  
...  

ABSTRACTCurrent serodiagnostic assays for Lyme disease are inadequate at detecting early infection due to poor sensitivity and nonspecificity that arise from the use of whole bacteria or bacterial proteins as assay targets; both targets contain epitopes that are cross-reactive with epitopes found in antigens of other bacterial species. Tests utilizing peptides that contain individual epitopes highly specific forBorrelia burgdorferias diagnostic targets are an attractive alternative to current assays. Using an overlapping peptide library, we mapped linear epitopes in OspC, a critical virulence factor ofB. burgdorferirequired for mammalian infection, and confirmed the results by enzyme-linked immunosorbent assay (ELISA). We identified a highly conserved 20-amino-acid peptide epitope, OspC1. Via ELISA, OspC1 detected specific IgM and/or IgG in 60 of 98 serum samples (62.1%) obtained from patients with erythema migrans (early Lyme disease) at the time of their initial presentation. By comparison, the commercially available OspC peptide PepC10 detected antibody in only 48 of 98 serum samples (49.0%). In addition, OspC1 generated fewer false-positive results among negative healthy and diseased (rheumatoid arthritis and positive Rapid Plasma Reagin [RPR+] test result) control populations than did PepC10. Both highly specific and more sensitive than currently available OspC peptides, OspC1 could have value as a component of a multipeptide Lyme disease serological assay with significantly improved capabilities for the diagnosis of early infection.


2012 ◽  
Vol 19 (4) ◽  
pp. 527-535 ◽  
Author(s):  
Bettina Wagner ◽  
Heather Freer ◽  
Alicia Rollins ◽  
David Garcia-Tapia ◽  
Hollis N. Erb ◽  
...  

ABSTRACTLyme disease in the United States is caused byBorrelia burgdorferisensu stricto, which is transmitted to mammals by infected ticks.Borreliaspirochetes differentially express immunogenic outer surface proteins (Osp). Our aim was to evaluate antibody responses to Osp antigens to aid the diagnosis of early infection and the management of Lyme disease. We analyzed antibody responses during the first 3 months after the experimental infection of dogs using a novel multiplex assay. Results were compared to those obtained with two commercial assays detecting C6 antigen. Multiplex analysis identified antibodies to OspC and C6 as early as 3 weeks postinfection (p.i.) and those to OspF by 5 weeks p.i. Antibodies to C6 and OspF increased throughout the study, while antibodies to OspC peaked between 7 and 11 weeks p.i. and declined thereafter. A short-term antibody response to OspA was observed in 3/8 experimentally infected dogs on day 21 p.i. Quant C6 enzyme-linked immunosorbent assay (ELISA) results matched multiplex results during the first 7 weeks p.i.; however, antibody levels subsequently declined by up to 29%. Immune responses then were analyzed in sera from 125 client-owned dogs and revealed high agreement between antibodies to OspF and C6 as robust markers for infection. Results from canine patient sera supported that OspC is an early infection marker and antibodies to OspC decline over time. The onset and decline of antibody responses toB. burgdorferiOsp antigens and C6 reflect their differential expression during infection. They provide valuable tools to determine the stage of infection, treatment outcomes, and vaccination status in dogs.


2007 ◽  
Vol 14 (7) ◽  
pp. 875-879 ◽  
Author(s):  
Maria J. C. Gomes-Solecki ◽  
Luciana Meirelles ◽  
John Glass ◽  
Raymond J. Dattwyler

ABSTRACTIn the absence of erythema migrans, the basis for diagnosis of Lyme disease is the demonstration of an antibody response againstBorrelia burgdorferiin an appropriate clinical setting. The C6 enzyme-linked immunosorbent assay, based on the IR6 region of VlsE, has become widely used in both the United States and Europe. We mapped the antigenic epitopes of IR6 to a shorter sequence that is equivalent in sensitivity and specificity to the full-length IR6 25-residue peptide. In addition, we observed significant differences in sensitivity between serum panels (60 to 100%), indicating that the selection of the serum panels can shape the apparent overall sensitivity of the assay. Contrary to prior reports, the assay sensitivity is greater when the IR6 peptide is derived from the sequence of the same infectingBorreliagenospecies. Using our North American panels and the two panels obtained from European Lyme disease patients, we determined that the IR6 assay that is based on a single genospecies ofBorreliaspp. is not optimal for use as a universal diagnostic assay for Lyme disease.


2000 ◽  
Vol 7 (6) ◽  
pp. 882-884 ◽  
Author(s):  
Zhannat Z. Nurgalieva ◽  
R. Almuchambetova ◽  
A. Machmudova ◽  
D. Kapsultanova ◽  
Michael S. Osato ◽  
...  

ABSTRACT Studies are difficult in areas lacking modern facilities due to the inability to reliably collect, store, and ship samples. Thus, we sought to evaluate the use of a dry plasma collection device for seroepidemiology studies. Plasma was obtained by fingerstick using a commercial dry plasma collection device (Chemcard Plasma Collection Device) and serum (venipuncture) from individuals in Kazakhstan. Plasma samples were air dried for 15 min and then stored desiccated in foil zip-lock pouches at 4 to 6°C and subsequently shipped to the United States by air at ambient temperature. Serum samples remained frozen at −20°C until assayed. Helicobacter pylori status was determined by enzyme-linked immunosorbent assay (HM-CAP EIA) for the dry plasma and the serum samples. The results were concordant in 250 of the 289 cases (86.5%). In 25 cases (8.6%), the dry plasma samples gave indeterminate results and could not be retested because only one sample was collected. Five serum samples were positive, and the corresponding dry plasma samples were negative; one serum sample was negative, and the corresponding plasma sample was positive. The relative sensitivity and specificity of the Chemcard samples to serum were 97.6 and 97.9%, respectively, excluding those with indeterminate results. Repeated freeze-thawing had no adverse effect on the accuracy of the test. We found the dry plasma collection device to provide an accurate and practical alternative to serum when venipuncture may be difficult or inconvenient and sample storage and handling present difficulties, especially for seroepidemiologic studies in rural areas or developing countries and where freeze-thawing may be unavoidable.


2006 ◽  
Vol 14 (1) ◽  
pp. 90-93 ◽  
Author(s):  
Monica E. Embers ◽  
Gary P. Wormser ◽  
Ira Schwartz ◽  
Dale S. Martin ◽  
Mario T. Philipp

ABSTRACT Detection of antibody to C6, a peptide that reproduces the sequence of the sixth invariable region within the central domain of the VlsE protein of Borrelia burgdorferi, is used currently for the serologic diagnosis of Lyme disease in humans. B. burgdorferi isolates taken from infected humans can be categorized into specific genetic subtypes (designated RST1, -2, and -3) by restriction fragment length polymorphisms in the 16S to 23S rRNA spacer sequence. Many of these, usually categorized as RST2, retain only segments of the linear plasmid lp28-1, which encodes VlsE. The VlsE genetic region is retained, but altered expression of this molecule could affect diagnosis by the C6 enzyme-linked immunosorbent assay (ELISA). Serum samples from patients infected with each of the three genotypes and from mice infected with three RST2 isolates were tested with the C6 ELISA. Such isolates elicited marked C6 responses in infected mice. The sensitivity of C6 antibody detection in patients infected with RST2 spirochetes was statistically indistinguishable from detection of RST1 and RST3 infections. These findings demonstrate that diagnosis by C6 ELISA remains effective for infection with all B. burgdorferi genotypes, including those with incomplete lp28-1 plasmids.


Healthcare ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 97 ◽  
Author(s):  
Melissa C. Fesler ◽  
Jyotsna S. Shah ◽  
Marianne J. Middelveen ◽  
Iris Du Cruz ◽  
Joseph J. Burrascano ◽  
...  

Background: With more than 300,000 new cases reported each year in the United States of America (USA), Lyme disease is a major public health concern. Borrelia burgdorferi sensu stricto (Bbss) is considered the primary agent of Lyme disease in North America. However, multiple genetically diverse Borrelia species encompassing the Borrelia burgdorferi sensu lato (Bbsl) complex and the Relapsing Fever Borrelia (RFB) group are capable of causing tickborne disease. We report preliminary results of a serological survey of previously undetected species of Bbsl and RFB in California and Mexico using a novel immunoblot technique. Methods: Serum samples were tested for seroreactivity to specific species of Bbsl and RFB using an immunoblot method based on recombinant Borrelia membrane proteins, as previously described. A sample was recorded as seropositive if it showed immunoglobulin M (IgM) and/or IgG reactivity with at least two proteins from a specific Borrelia species. Results: The patient cohort consisted of 90 patients residing in California or Mexico who met the clinical case definition of chronic Lyme disease. Immunoblot testing revealed that 42 patients were seropositive for Bbsl (Group 1), while 56 patients were seropositive for RFB (Group 2). Eight patients were seropositive for both Bbsl and RFB species. Group 1 included patients who were seropositive for Bbss (14), B. californiensis (eight), B. spielmanii (10), B. afzelii/B. garinii (10), and mixed infections that included B. mayonii (three). Group 2 included patients who were seropositive for B. hermsii (nine), B. miyamotoi (seven), B. turicatae (nine), and B. turcica (two). In the remaining Group 1 and Group 2 patients, the exact Borrelia species could not be identified using the immunoblot technique. Conclusions: Lyme disease is associated with a diverse group of Borrelia species in California and Mexico. Current testing for Lyme disease focuses on detection of Bbss, possibly resulting in missed diagnoses and failure to administer appropriate antibiotic therapy in a timely manner. The genetic diversity of Borrelia spirochetes must be considered in future Lyme disease test development.


2015 ◽  
Vol 22 (11) ◽  
pp. 1176-1186 ◽  
Author(s):  
Zachary P. Weiner ◽  
Rebecca M. Crew ◽  
Kevin S. Brandt ◽  
Amy J. Ullmann ◽  
Martin E. Schriefer ◽  
...  

ABSTRACTLaboratory testing for the diagnosis of Lyme disease is performed primarily by serologic assays and is accurate for detection beyond the acute stage of the infection. Serodiagnostic assays to detect the early stages of infection, however, are limited in their sensitivity, and improvement is warranted. We analyzed a series ofBorrelia burgdorferiproteins known to be induced within feeding ticks and/or during mammalian infection for their utility as serodiagnostic markers against a comprehensive panel of Lyme disease patient serum samples. The antigens were assayed for IgM and IgG reactivity in line immunoblots and separately by enzyme-linked immunosorbent assay (ELISA), with a focus on reactivity against early Lyme disease with erythema migrans (EM), early disseminated Lyme neuroborreliosis, and early Lyme carditis patient serum samples. By IgM immunoblotting, we found that recombinant proteins BBA65, BBA70, and BBA73 reacted with early Lyme EM samples at levels comparable to those of the OspC antigen used in the current IgM blotting criteria. Additionally, these proteins reacted with serum samples from patients with early neuroborreliosis and early carditis, suggesting value in detecting early stages of this disease progression. We also found serological reactivity against recombinant proteins BBA69 and BBA73 with early-Lyme-disease samples using IgG immunoblotting and ELISA. Significantly, some samples that had been scored negative by the Centers for Disease Control and Prevention-recommended 2-tiered testing algorithm demonstrated positive reactivity to one or more of the antigens by IgM/IgG immunoblot and ELISA. These results suggest that incorporating additionalin vivo-expressed antigens into the current IgM/IgG immunoblotting tier in a recombinant protein platform assay may improve the performance of early-Lyme-disease serologic testing.


Sign in / Sign up

Export Citation Format

Share Document