scholarly journals Partially Functional Outer-Arm Dynein in a Novel Chlamydomonas Mutant Expressing a Truncated γ Heavy Chain

2008 ◽  
Vol 7 (7) ◽  
pp. 1136-1145 ◽  
Author(s):  
Zhongmei Liu ◽  
Hiroko Takazaki ◽  
Yuki Nakazawa ◽  
Miho Sakato ◽  
Toshiki Yagi ◽  
...  

ABSTRACT The outer dynein arm of Chlamydomonas flagella contains three heavy chains (α, β, and γ), each of which exhibits motor activity. How they assemble and cooperate is of considerable interest. Here we report the isolation of a novel mutant, oda2-t, whose γ heavy chain is truncated at about 30% of the sequence. While the previously isolated γ chain mutant oda2 lacks the entire outer arm, oda2-t retains outer arms that contain α and β heavy chains, suggesting that the N-terminal sequence (corresponding to the tail region) is necessary and sufficient for stable outer-arm assembly. Thin-section electron microscopy and image analysis localize the γ heavy chain to a basal region of the outer-arm image in the axonemal cross section. The motility of oda2-t is lower than that of the wild type and oda11 (lacking the α heavy chain) but higher than that of oda2 and oda4-s7 (lacking the motor domain of the β heavy chain). Thus, the outer-arm dynein lacking the γ heavy-chain motor domain is partially functional. The availability of mutants lacking individual heavy chains should greatly facilitate studies on the structure and function of the outer-arm dynein.

1985 ◽  
Vol 73 (1) ◽  
pp. 299-310
Author(s):  
J.S. Hyams

Axonemes from the heterosporous water fern Marsilea vestita were fixed in the presence of tannic acid and examined by thin-section electron microscopy. Transverse sections revealed the normal 9+2 configuration except for the absence of the outer of the two dynein arms. Both arms were normally preserved in parallel preparations of Chlamydomonas axonemes. Isolated dynein from the ciliated protozoon Tetrahymena bound to Marsilea axonemes at the site normally occupied by the outer arm. Dynein binding was partially reversed by ATP as judged by both electron microscopy and polyacrylamide gel electrophoresis. This system should provide a valuable insight into the biochemistry and function of the inner dynein arm and the relationship of the two arms to motility in more conventionally equipped axonemes.


1994 ◽  
Vol 127 (4) ◽  
pp. 1041-1048 ◽  
Author(s):  
P A Pesavento ◽  
R J Stewart ◽  
L S Goldstein

This paper describes the molecular and biochemical properties of KLP68D, a new kinesin-like motor protein in Drosophila melanogaster. Sequence analysis of a full-length cDNA encoding KLP68D demonstrates that this protein has a domain that shares significant sequence identity with the entire 340-amin acid kinesin heavy chain motor domain. Sequences extending beyond the motor domain predict a region of alpha-helical coiled-coil followed by a globular "tail" region; there is significant sequence similarity between the alpha-helical coiled-coil region of the KLP68D protein and similar regions of the KIF3 protein of mouse and the KRP85 protein of sea urchin. This finding suggests that all three proteins may be members of the same family, and that they all perform related functions. KLP68D protein produced in Escherichia coli is, like kinesin itself, a plus-end directed microtubule motor. In situ hybridization analysis of KLP68D RNA in Drosophila embryos indicates that the KLP68D gene is expressed primarily in the central nervous system and in a subset of the peripheral nervous system during embryogenesis. Thus, KLP68D may be used for anterograde axonal transport and could conceivably move cargoes in fly neurons different than those moved by kinesin heavy chain or other plus-end directed motors.


1991 ◽  
Vol 113 (3) ◽  
pp. 615-622 ◽  
Author(s):  
H Sakakibara ◽  
D R Mitchell ◽  
R Kamiya

A novel Chlamydomonas flagellar mutant (oda-11) missing the alpha heavy chain of outer arm dynein but retaining the beta and gamma heavy chains was isolated. Restriction fragment length polymorphism analysis with an alpha heavy chain locus genomic probe indicated that the oda-11 mutation was genetically linked with the structural gene of the alpha heavy chain. In cross-section electron micrographs, the oda-11 axoneme lacked the outermost appendage of the outer arm, indicating that the alpha heavy chain should be located in this region in the wild-type outer arm. This mutant swam at 119 microns/s at 25 degrees C, i.e., at an intermediate speed between those of wild type (194 microns/s) and of oda-1 (62 microns/s), a mutant missing the entire outer dynein arm. The flagellar beat frequency (approximately 50 Hz) was also between those of wild type (approximately 60 Hz) and oda-1 (approximately 26 Hz). These results indicate that the outer dynein arm of Chlamydomonas can be assembled without the alpha heavy chain, and that the outer arm missing the alpha heavy chain retains partial function.


2001 ◽  
Vol 7 (S2) ◽  
pp. 52-53
Author(s):  
Vladislav V. Speransky ◽  
Kimberly L. Taylor ◽  
Herman K. Edskes ◽  
Reed B. Wickner ◽  
Alasdair C. Steven

The concept of prion (infectious protein) originated in studies of transmissible spongioform encephalopathies (TSE) in mammals, but more recently, two nonchromosomal genes of yeast- [PSI] and [URE3] - were identified as prions. While the agents of TSEs kill infected cells and [URE3] or [PSI+] only slow growth at most, these infections are believed to have similar mechanisms, i.e. self-propagating amyloids. TSEs are often associated with amyloid deposition in infected tissues, and both Sup35p and Ure2p have been shown to form amyloid in vitro.[URE3] is a prion of the Ure2 protein, that normally regulates nitrogen catabolism. Its ‘prion’ domain (residues 1-65) is necessary and sufficient for propagation of the prion, whereas the C-terminal portion (residues 81-354) is sufficient to carry out the nitrogen regulation function. The prion domain peptide spontaneously forms amyloid filaments in vitro. Full-length native Ure2p is a stable soluble dimer, but forms co-filaments when the prion domain peptide is added. This in vitro amyloid formation is highly specific and self-propagating, thus providing a possible explanation for the [URE3] prion. We have sought to clarify this hypothesis by examining the state of Ure2p in [URE3] cells by thin-section electron microscopy.Yeast cells with the [URE3] prion and control [ure-o] cells were thin-sectioned after fixation and embedding in an epoxy resin. We found distinctive filamentous aggregates in the cytoplasm of [URE3] cells of a strain that overexpresses Ure2p (Fig. 1). These aggregates were seen in some cell profiles represented in 50-70 nm sections, and were never seen in control sections of [ure-o] cells. in cell sections showing these structures, there was typically one such aggregate, which could be quite large - up to several μm across - and approximately globular in outline. They contain irregularly associated filaments about 25 nm in diameter.


1969 ◽  
Vol 115 (3) ◽  
pp. 371-375 ◽  
Author(s):  
D. Givol ◽  
E. Hurwitz

Goat immunoglobulin G (IgG) was isolated and characterized. The molecular weights of the IgG and its heavy chains and light chains were found to be 144000, 53600 and 23000 respectively. The light chain corresponds to human L type as was shown by the absence of C-terminal S-carboxymethylcysteine and its high content of N-terminal pyrrolid-2-one-5-carboxylic acid (PCA). The major C-terminal residue of the light chain was serine and the major N-terminal dipeptide was PCA-Ala (0·6mole/mole). The major C-terminal residue of the heavy chain was glycine and the N-terminal sequence of the heavy chain is PCA-Val-Gln. This tripeptide was obtained in a 70% yield.


1969 ◽  
Vol 112 (2) ◽  
pp. 173-185 ◽  
Author(s):  
J. M. Wilkinson

The sequences of the N-terminal peptides prepared by Pronase digestion of the heavy chain of rabbit immunoglobulin G of allotype Aa1, Aa2 and Aa3 were determined and were shown to be related to the allotype. An N-terminal fragment of about 34 residues was also prepared from the allotype heavy chains, by cleavage with cyanogen bromide; the yield varied with the allotype. The sequences of the cyanogen bromide fragments from the Aa1 and Aa3 heavy chains contain allotype-related variations similar to those found in the N-terminal Pronase peptides, and these sequences are thought to be representative of the whole heavy-chain populations. There is about 60% homology between the two sequences, and superimposed on the differences between them there are a number of positions within each sequence at which at least two amino acids are present.


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Author(s):  
E. Keyhani

The mutagenic effect of ethidium bromide on the mitochondrial DNA is well established. Using thin section electron microscopy, it was shown that when yeast cells were grown in the presence of ethidium bromide, besides alterations in the mitochondria, the plasma membrane also showed alterations consisting of 75 to 110 nm-deep pits. Furthermore, ethidium bromide induced an increase in the length and number of endoplasmic reticulum and in the number of intracytoplasmic vesicles.Freeze-fracture, by splitting the hydrophobic region of the membrane, allows the visualization of the surface view of the membrane, and consequently, any alteration induced by ethidium bromide on the membrane can be better examined by this method than by the thin section method.Yeast cells, Candida utilis. were grown in the presence of 35 μM ethidium bromide. Cells were harvested and freeze-fractured according to the procedure previously described.


1987 ◽  
Author(s):  
F Tokunaga ◽  
T Miyata ◽  
T Nakamura ◽  
T Morita ◽  
S Iwanaga

Limulus clotting factor, factor C, is a lipopolysaccharide (LPS)-sensitive serine-protease zymogen present in the hemocytes. It is a two-chain glycoprotein (M.W. = 123,000) composed of a heavy chain (M.W. = 80,000) and a light chain (M.W. = 43,000) T. Nakamura et al. (1986) Eur. J. Biochem. 154, 511-521 .On further studies of this zymogen, a single-chain factor C (M.W. = 123,000) was identified by Western blotting technique. The heavy chain had an NH2-terminal sequence of Ser-Gly-Val-Asp-, which was consistent with the NH2-terminal sequence of the single-chain factor C, indicating that the heavy chain is located in the NH2-terminal part of the zymogen. The light chain had an NH22-terminal sequence of Ser-Ser-Gln-Pro-. Incubation of the two-chain zymogen with LPS resulted in the cleavage of a Phe-Ile bond between residues 72 and 73 of the light chain. Concomitant with this cleavage, the A (72.amino acids) and B chains derived from the light chain was formed. The complete amino acid sequence of the A chain was determined by automated Edman degradation. The A chain contained a typical segment which is similar structuraly to those a family of repeats in human β2 -glycoprotein I, complement factors B, Clr, Cls, H, C4b-binding protein, 02, coagulation factor XIII b subunit, haptoglobin a chain, and interleukin 2 receptor. The NH2-terminal sequence of the B chain was Ile-Trp-Asn-Gly-. This chain contained the serine-active site sequence of -ASP-Ala-Cys-Ser-Gly-Asp-SER-Gly-Gly-Pro-.These results indicate that limulus factor C exists in the hemocytes in a single-chain zymogen form and is converted to an active serine-protease by hydrolysis of a specific Phe-Ile peptide bond. The correlation of limulus factor C and mammalian complement proteins was also suggested.


Sign in / Sign up

Export Citation Format

Share Document