scholarly journals Class III Chitin Synthase ChsB of Aspergillus nidulans Localizes at the Sites of Polarized Cell Wall Synthesis and Is Required for Conidial Development

2009 ◽  
Vol 8 (7) ◽  
pp. 945-956 ◽  
Author(s):  
Kazuharu Fukuda ◽  
Kazunari Yamada ◽  
Ken Deoka ◽  
Shuichi Yamashita ◽  
Akinori Ohta ◽  
...  

ABSTRACT Class III chitin synthases play important roles in tip growth and conidiation in many filamentous fungi. However, little is known about their functions in those processes. To address these issues, we characterized the deletion mutant of a class III chitin synthase-encoding gene of Aspergillus nidulans, chsB, and investigated ChsB localization in the hyphae and conidiophores. Multilayered cell walls and intrahyphal hyphae were observed in the hyphae of the chsB deletion mutant, and wavy septa were also occasionally observed. ChsB tagged with FLAG or enhanced green fluorescent protein (EGFP) localized mainly at the tips of germ tubes, hyphal tips, and forming septa during hyphal growth. EGFP-ChsB predominantly localized at polarized growth sites and between vesicles and metulae, between metulae and phialides, and between phalides and conidia in asexual development. These results strongly suggest that ChsB functions in the formation of normal cell walls of hyphae, as well as in conidiophore and conidia development in A. nidulans.

2008 ◽  
Vol 7 (8) ◽  
pp. 1278-1288 ◽  
Author(s):  
Soo Chan Lee ◽  
Sabrina N. Schmidtke ◽  
Lawrence J. Dangott ◽  
Brian D. Shaw

ABSTRACT Filamentous fungi undergo polarized growth throughout most of their life cycles. The Spitzenkörper is an apical organelle composed primarily of vesicles that is unique to filamentous fungi and is likely to act as a vesicle supply center for tip growth. Vesicle assembly and trafficking are therefore important for hyphal growth. ADP ribosylation factors (Arfs), a group of small GTPase proteins, play an important role in nucleating vesicle assembly. Little is known about the role of Arfs in filamentous hyphal growth. We found that Aspergillus nidulans is predicted to encode six Arf family proteins. Analysis of protein sequence alignments suggests that A. nidulans ArfB shares similarity with ARF6 of Homo sapiens and Arf3p of Saccharomyces cerevisiae. An arfB null allele (arfB disrupted by a transposon [arfB::Tn]) was characterized by extended isotropic growth of germinating conidia followed by cell lysis or multiple, random germ tube emergence, consistent with a failure to establish polarity. The mutant germ tubes and hyphae that do form initially meander abnormally off of the axis of polarity and frequently exhibit dichotomous branching at cell apices, consistent with a defect in polarity maintenance. FM4-64 staining of the arfB::Tn strain revealed that another phenotypic characteristic seen for arfB::Tn is a reduction and delay in endocytosis. ArfB is myristoylated at its N terminus. Green fluorescent protein-tagged ArfB (ArfB::GFP) localizes to the plasma membrane and endomembranes and mutation (ArfBG2A::GFP) of the N-terminal myristoylation motif disperses the protein to the cytoplasm rather than to the membranes. These results demonstrate that ArfB functions in endocytosis to play important roles in polarity establishment during isotropic growth and polarity maintenance during hyphal extension.


2013 ◽  
Vol 13 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Shizhu Zhang ◽  
Hailin Zheng ◽  
Nanbiao Long ◽  
Natalia Carbó ◽  
Peiying Chen ◽  
...  

ABSTRACTCalcium-mediated signaling pathways are widely employed in eukaryotes and are implicated in the regulation of diverse biological processes. InSaccharomyces cerevisiae, at least two different calcium uptake systems have been identified: the high-affinity calcium influx system (HACS) and the low-affinity calcium influx system (LACS). Compared to the HACS, the LACS in fungi is not well known. In this study, FigA, a homolog of the LACS member Fig1 fromS. cerevisiae, was functionally characterized in the filamentous fungusAspergillus nidulans. Loss offigAresulted in retardant hyphal growth and a sharp reduction of conidial production. Most importantly, FigA is essential for the homothallic mating (self-fertilization) process; further, FigA is required for heterothallic mating (outcrossing) in the absence of HACSmidA. Interestingly, in afigAdeletion mutant, adding extracellular Ca2+rescued the hyphal growth defects but could not restore asexual and sexual reproduction. Furthermore, quantitative PCR results revealed thatfigAdeletion sharply decreased the expression ofbrlAandnsdD, which are known as key regulators during asexual and sexual development, respectively. In addition, green fluorescent protein (GFP) tagging at the C terminus of FigA (FigA::GFP) showed that FigA localized to the center of the septum in mature hyphal cells, to the location between vesicles and metulae, and between the junctions of metulae and phialides in conidiophores. Thus, our findings suggest that FigA, apart from being a member of a calcium uptake system inA. nidulans, may play multiple unexplored roles during hyphal growth and asexual and sexual development.


2009 ◽  
Vol 20 (2) ◽  
pp. 673-684 ◽  
Author(s):  
Nadine Zekert ◽  
Reinhard Fischer

The extremely polarized growth form of filamentous fungi imposes a huge challenge on the cellular transport machinery, because proteins and lipids required for hyphal extension need to be continuously transported to the growing tip. Recently, it was shown that endocytosis is also important for hyphal growth. Here, we found that the Aspergillus nidulans kinesin-3 motor protein UncA transports vesicles and is required for fast hyphal extension. Most surprisingly, UncA-dependent vesicle movement occurred along a subpopulation of microtubules. Green fluorescent protein (GFP)-labeled UncArigor decorated a single microtubule, which remained intact during mitosis, whereas other cytoplasmic microtubules were depolymerized. Mitotic spindles were not labeled with GFP-UncArigor but reacted with a specific antibody against tyrosinated α-tubulin. Hence, UncA binds preferentially to detyrosinated microtubules. In contrast, kinesin-1 (conventional kinesin) and kinesin-7 (KipA) did not show a preference for certain microtubules. This is the first example for different microtubule subpopulations in filamentous fungi and the first example for the preference of a kinesin-3 motor for detyrosinated microtubules.


2004 ◽  
Vol 15 (10) ◽  
pp. 4622-4632 ◽  
Author(s):  
Yasmina Bauer ◽  
Philipp Knechtle ◽  
Jürgen Wendland ◽  
Hanspeter Helfer ◽  
Peter Philippsen

Characteristic features of morphogenesis in filamentous fungi are sustained polar growth at tips of hyphae and frequent initiation of novel growth sites (branches) along the extending hyphae. We have begun to study regulation of this process on the molecular level by using the model fungus Ashbya gossypii. We found that the A. gossypii Ras-like GTPase Rsr1p/Bud1p localizes to the tip region and that it is involved in apical polarization of the actin cytoskeleton, a determinant of growth direction. In the absence of RSR1/BUD1, hyphal growth was severely slowed down due to frequent phases of pausing of growth at the hyphal tip. During pausing events a hyphal tip marker, encoded by the polarisome component AgSPA2, disappeared from the tip as was shown by in vivo time-lapse fluorescence microscopy of green fluorescent protein-labeled AgSpa2p. Reoccurrence of AgSpa2p was required for the resumption of hyphal growth. In the Agrsr1/bud1Δ deletion mutant, resumption of growth occurred at the hyphal tip in a frequently uncoordinated manner to the previous axis of polarity. Additionally, hyphal filaments in the mutant developed aberrant branching sites by mislocalizing AgSpa2p thus distorting hyphal morphology. These results define AgRsr1p/Bud1p as a key regulator of hyphal growth guidance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wilson Horner ◽  
Jacob O. Brunkard

Plant cells are connected by plasmodesmata (PD), nanoscopic channels in cell walls that allow diverse cytosolic molecules to move between neighboring cells. PD transport is tightly coordinated with physiology and development, although the range of signaling pathways that influence PD transport has not been comprehensively defined. Several plant hormones, including salicylic acid (SA) and auxin, are known to regulate PD transport, but the effects of other hormones have not been established. In this study, we provide evidence that cytokinins promote PD transport in leaves. Using a green fluorescent protein (GFP) movement assay in the epidermis of Nicotiana benthamiana, we have shown that PD transport significantly increases when leaves are supplied with exogenous cytokinins at physiologically relevant concentrations or when a positive regulator of cytokinin responses, ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 5 (AHP5), is overexpressed. We then demonstrated that silencing cytokinin receptors, ARABIDOPSIS HISTIDINE KINASE 3 (AHK3) or AHK4 or overexpressing a negative regulator of cytokinin signaling, AAHP6, significantly decreases PD transport. These results are supported by transcriptomic analysis of mutants with increased PD transport (ise1–4), which show signs of enhanced cytokinin signaling. We concluded that cytokinins contribute to dynamic changes in PD transport in plants, which will have implications in several aspects of plant biology, including meristem patterning and development, regulation of the sink-to-source transition, and phytohormone crosstalk.


1999 ◽  
Vol 181 (12) ◽  
pp. 3721-3729 ◽  
Author(s):  
Hiroyuki Horiuchi ◽  
Makoto Fujiwara ◽  
Shuichi Yamashita ◽  
Akinori Ohta ◽  
Masamichi Takagi

ABSTRACT We have found that the Aspergillus nidulans csmA gene encodes a novel protein which consists of an N-terminal myosin motor-like domain and a C-terminal chitin synthase domain (M. Fujiwara, H. Horiuchi, A. Ohta, and M. Takagi, Biochem. Biophys. Res. Commun. 236:75–78, 1997). To clarify the roles of csmA in fungal morphogenesis, we constructed csmA null mutants. The growth rate of the mutant colonies was almost the same as that of the wild-type strain, but hyphal growth was severely inhibited when a chitin-binding reagent, Calcofluor white or Congo red, was added to the medium. Moreover, morphological abnormalities in tip growth and septum formation were identified microscopically. Proliferation of intracellular new hyphae, called intrahyphal hyphae, which behaved as intrinsic hyphae, was the most striking phenotypic feature among them. These phenotypes were not suppressed when the only chitin synthase domain of csmA was expressed under the control of thealcA promoter, whereas they were suppressed when the intact form of csmA was expressed. Therefore, it was concluded that the product of csmA (CsmA) has important roles in polarized cell wall synthesis and maintenance of cell wall integrity and that the myosin motor-like domain is indispensable for these functions.


2011 ◽  
Vol 10 (5) ◽  
pp. 683-695 ◽  
Author(s):  
Eddy Sánchez-León ◽  
Jorge Verdín ◽  
Michael Freitag ◽  
Robert W. Roberson ◽  
Salomon Bartnicki-Garcia ◽  
...  

ABSTRACTWe describe the subcellular location of chitin synthase 1 (CHS-1), one of seven chitin synthases inNeurospora crassa. Laser scanning confocal microscopy of growing hyphae showed CHS-1–green fluorescent protein (GFP) localized conspicuously in regions of active wall synthesis, namely, the core of the Spitzenkörper (Spk), the apical cell surface, and developing septa. It was also present in numerous fine particles throughout the cytoplasm plus some large vacuoles in distal hyphal regions. Although the same general subcellular distribution was observed previously for CHS-3 and CHS-6, they did not fully colocalize. Dual labeling showed that the three different chitin synthases were contained in different vesicular compartments, suggesting the existence of a different subpopulation of chitosomes for each CHS. CHS-1–GFP persisted in the Spk during hyphal elongation but disappeared from the septum after its development was completed. Wide-field fluorescence microscopy and total internal reflection fluorescence microscopy revealed subapical clouds of particles, suggestive of chitosomes moving continuously toward the Spk. Benomyl had no effect on CHS-1–GFP localization, indicating that microtubules are not strictly required for CHS trafficking to the hyphal apex. Conversely, actin inhibitors caused severe mislocalization of CHS-1–GFP, indicating that actin plays a major role in the orderly traffic and localization of CHS-1 at the apex.


2010 ◽  
Vol 23 (12) ◽  
pp. 1563-1572 ◽  
Author(s):  
Ayumu Sakaguchi ◽  
Gento Tsuji ◽  
Yasuyuki Kubo

Several signal transduction pathways, including mitogen-activated protein kinase (MAPK) pathways, are involved in appressorium development in Colletotrichum orbiculare, the causal agent of cucumber anthracnose disease. In this study, CoMEKK1, a yeast MAPK kinases (MAPKK) kinase STE11 homolog, was identified as a disrupted gene in an Agrobacterium tumefaciens-mediated transformation mutant. The phenotype of comekk1 disruptant was similar to that of cmk1, a Saccharomyces cerevisiae Fus3/Kss1 MAPK homolog mutant. Moreover, comekk1 and cmk1 mutants were sensitive to high osmotic and salinity stresses, indicating that Comekk1p/Cmk1p signal transduction is involved in stress tolerance. The transformants of the wild type and the comekk1 mutant expressing a constitutively active form of the CoMEKK1 showed slower hyphal growth and abnormal appressorium formation, whereas those of the cmk1 disruptant did not. A Cmk1p-green fluorescent protein (GFP) intracellular localization experiment indicated that nuclear localization of the Cmk1p-GFP fusion protein induced by salt stress was diminished in comekk1 mutants. These results indicate that Comekk1p functions upstream of Cmk1p.


2015 ◽  
Vol 105 (4) ◽  
pp. 419-423 ◽  
Author(s):  
Chenlei Hua ◽  
Kiki Kots ◽  
Tijs Ketelaar ◽  
Francine Govers ◽  
Harold J. G. Meijer

Oomycetes are fungal-like pathogens that cause notorious diseases. Protecting crops against oomycetes requires regular spraying with chemicals, many with an unknown mode of action. In the 1990s, flumorph was identified as a novel crop protection agent. It was shown to inhibit the growth of oomycete pathogens including Phytophthora spp., presumably by targeting actin. We recently generated transgenic Phytophthora infestans strains that express Lifeact-enhanced green fluorescent protein (eGFP), which enabled us to monitor the actin cytoskeleton during hyphal growth. For analyzing effects of oomicides on the actin cytoskeleton in vivo, the P. infestans Lifeact-eGFP strain is an excellent tool. Here, we confirm that flumorph is an oomicide with growth inhibitory activity. Microscopic analyses showed that low flumorph concentrations provoked hyphal tip swellings accompanied by accumulation of actin plaques in the apex, a feature reminiscent of tips of nongrowing hyphae. At higher concentrations, swelling was more pronounced and accompanied by an increase in hyphal bursting events. However, in hyphae that remained intact, actin filaments were indistinguishable from those in nontreated, nongrowing hyphae. In contrast, in hyphae treated with the actin depolymerizing drug latrunculin B, no hyphal bursting was observed but the actin filaments were completely disrupted. This difference demonstrates that actin is not the primary target of flumorph.


Sign in / Sign up

Export Citation Format

Share Document