scholarly journals Sterol Regulatory Element Binding Proteins in Fungi: Hypoxic Transcription Factors Linked to Pathogenesis

2010 ◽  
Vol 9 (3) ◽  
pp. 352-359 ◽  
Author(s):  
Clara M. Bien ◽  
Peter J. Espenshade

ABSTRACT Sterol regulatory element binding proteins (SREBPs) are membrane-bound transcription factors whose proteolytic activation is controlled by the cellular sterol concentration. Mammalian SREBPs are activated in cholesterol-depleted cells and serve to regulate cellular lipid homeostasis. Recent work demonstrates that SREBP is functionally conserved in fungi. While the ability to respond to sterols is conserved, fungal SREBPs are hypoxic transcription factors required for adaptation to a low-oxygen environment. In the fission yeast Schizosaccharomyces pombe, oxygen regulates the SREBP homolog Sre1 by independently controlling both its proteolytic activation and its degradation. SREBP is also required for adaptation to hypoxia in the human pathogens Cryptococcus neoformans and Aspergillus fumigatus. In these organisms, SREBP is required for virulence and resistance to antifungal drugs, making the SREBP pathway a potential target for antifungal therapy.

2001 ◽  
Vol 21 (19) ◽  
pp. 6395-6405 ◽  
Author(s):  
Åshild Vik ◽  
Jasper Rine

ABSTRACT Sterol levels affect the expression of many genes in yeast and humans. We found that the paralogous transcription factors Upc2p and Ecm22p of yeast were sterol regulatory element (SRE) binding proteins (SREBPs) responsible for regulating transcription of the sterol biosynthetic genes ERG2 and ERG3. We defined a 7-bp SRE common to these and other genes, including many genes involved in sterol biosynthesis. Upc2p and Ecm22p activatedERG2 expression by binding directly to this element in the ERG2 promoter. Upc2p and Ecm22p may thereby coordinately regulate genes involved in sterol homeostasis in yeast. Ecm22p and Upc2p are members of the fungus-specific Zn[2]-Cys[6] binuclear cluster family of transcription factors and share no homology to the analogous proteins, SREBPs, that are responsible for transcriptional regulation by sterols in humans. These results suggest that Saccharomyces cerevisiae and human cells regulate sterol synthesis by different mechanisms.


2007 ◽  
Vol 8 (1) ◽  
pp. 62
Author(s):  
S. Rodriguez-Acebes ◽  
J. Martinez-Botas ◽  
A. Davalos ◽  
M.A. Lasuncion ◽  
R.B. Rawson ◽  
...  

1999 ◽  
Vol 10 (2) ◽  
pp. 143-150 ◽  
Author(s):  
Jay D. Morton ◽  
Lichiro Shimomura

Sign in / Sign up

Export Citation Format

Share Document