scholarly journals Cdc24, the GDP-GTP Exchange Factor for Cdc42, Is Required for Invasive Hyphal Growth of Candida albicans

2003 ◽  
Vol 2 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Martine Bassilana ◽  
James Blyth ◽  
Robert A. Arkowitz

ABSTRACT Candida albicans, the most common human fungal pathogen, is particularly problematic for immunocompromised individuals. The reversible transition of this fungal pathogen to a filamentous form that invades host tissue is important for its virulence. Although different signaling pathways such as a mitogen-activated protein kinase and a protein kinase A cascade are critical for this morphological transition, the function of polarity establishment proteins in this process has not been determined. We examined the role of four different polarity establishment proteins in C. albicans invasive growth and virulence by using strains in which one copy of each gene was deleted and the other copy expressed behind the regulatable promoter MET3. Strikingly, mutants with ectopic expression of either the Rho G-protein Cdc42 or its exchange factor Cdc24 are unable to form invasive hyphal filaments and germ tubes in response to serum or elevated temperature and yet grow normally as a budding yeast. Furthermore, these mutants are avirulent in a mouse model for systemic infection. This function of the Cdc42 GTPase module is not simply a general feature of polarity establishment proteins. Mutants with ectopic expression of the SH3 domain containing protein Bem1 or the Ras-like G-protein Bud1 can grow in an invasive fashion and are virulent in mice, albeit with reduced efficiency. These results indicate that a specific regulation of Cdc24/Cdc42 activity is required for invasive hyphal growth and suggest that these proteins are required for pathogenicity of C. albicans.

2005 ◽  
Vol 16 (6) ◽  
pp. 2772-2785 ◽  
Author(s):  
Avigail Atir-Lande ◽  
Tsvia Gildor ◽  
Daniel Kornitzer

The ability of Candida albicans, a major fungal pathogen, to switch between a yeast form, and a hyphal (mold) form is recognized as being important for the ability of the organism to invade the host and cause disease. We found that a C. albicans mutant deleted for CaCDC4, a homologue of the Saccharomyces cerevisiae F-box protein component of the SCFCDC4ubiquitin ligase, is viable and displays constitutive filamentous, mostly hyphal, growth. The phenotype of the Cacdc4–/– mutant suggests that ubiquitin-mediated protein degradation is involved in the regulation of the dimorphic switch of C. albicans and that one or more regulators of the yeast-to-mold switch are among the substrates of SCFCaCDC4. Epistasis analysis indicates that the Cacdc4–/– phenotype is largely independent of the filamentation-inducing transcription factors Efg1 and Cph1. We identify C. albicans Far1 and Sol1, homologues of the S. cerevisiae SCFCDC4substrates Far1 and Sic1, and show that Sol1 is a substrate of C. albicans Cdc4. Neither protein is essential for the hyphal phenotype of the Cacdc4–/– mutant. However, ectopic expression and deletion of SOL1 indicate a role for this gene in C. albicans morphogenesis.


2001 ◽  
Vol 21 (19) ◽  
pp. 6418-6428 ◽  
Author(s):  
Shelley Lane ◽  
Song Zhou ◽  
Ting Pan ◽  
Qian Dai ◽  
Haoping Liu

ABSTRACT Candida albicans undergoes a morphogenetic switch from budding yeast to hyphal growth form in response to a variety of stimuli and growth conditions. Multiple signaling pathways, including a Cph1-mediated mitogen-activated protein kinase pathway and an Efg1-mediated cyclic AMP/protein kinase A pathway, regulate the transition. Here we report the identification of a basic helix-loop-helix transcription factor of the Myc subfamily (Cph2) by its ability to promote pseudohyphal growth inSaccharomyces cerevisiae. Like sterol response element binding protein 1, Cph2 has a Tyr instead of a conserved Arg in the basic DNA binding region. Cph2 regulates hyphal development in C. albicans, ascph2/cph2 mutant strains show medium-specific impairment in hyphal development and in the induction of hypha-specific genes. However, many hypha-specific genes do not have potential Cph2 binding sites in their upstream regions. Interestingly, upstream sequences of all known hypha-specific genes are found to contain potential binding sites for Tec1, a regulator of hyphal development. Northern analysis shows that TEC1 transcription is highest in the medium in which cph2/cph2 displays a defect in hyphal development, and Cph2 is necessary for this transcriptional induction of TEC1. In vitro gel mobility shift experiments show that Cph2 directly binds to the two sterol regulatory element 1-like elements upstream of TEC1. Furthermore, the ectopic expression of TEC1 suppresses the defect ofcph2/cph2 in hyphal development. Therefore, the function of Cph2 in hyphal transcription is mediated, in part, through Tec1. We further show that this function of Cph2 is independent of the Cph1- and Efg1-mediated pathways.


2001 ◽  
Vol 357 (2) ◽  
pp. 587-592 ◽  
Author(s):  
Nickolai O. DULIN ◽  
Sergei N. ORLOV ◽  
Chad M. KITCHEN ◽  
Tatyana A. VOYNO-YASENETSKAYA ◽  
Joseph M. MIANO

A hallmark of cultured smooth muscle cells (SMCs) is the rapid down-regulation of several lineage-restricted genes that define their in vivo differentiated phenotype. Identifying factors that maintain an SMC differentiated phenotype has important implications in understanding the molecular underpinnings governing SMC differentiation and their subversion to an altered phenotype in various disease settings. Here, we show that several G-protein coupled receptors [α-thrombin, lysophosphatidic acid and angiotensin II (AII)] increase the expression of smooth muscle calponin (SM-Calp) in rat and human SMC. The increase in SM-Calp protein appears to be selective for G-protein-coupled receptors as epidermal growth factor was without effect. Studies using AII showed a 30-fold increase in SM-Calp protein, which was dose- and time-dependent and mediated by the angiotensin receptor-1 (AT1 receptor). The increase in SM-Calp protein with AII was attributable to transcriptional activation of SM-Calp based on increases in steady-state SM-Calp mRNA, increases in SM-Calp promoter activity and complete abrogation of protein induction with actinomycin D. To examine the potential role of extracellular signal-regulated kinase (Erk1/2), protein kinase B, p38 mitogen-activated protein kinase and protein kinase C in AII-induced SM-Calp, inhibitors to each of the signalling pathways were used. None of these signalling molecules appears to be crucial for AII-induced SM-Calp expression, although Erk1/2 may be partially involved. These results identify SM-Calp as a target of AII-mediated signalling, and suggest that the SMC response to AII may incorporate a novel activity of SM-Calp.


2020 ◽  
Vol 22 (10) ◽  
Author(s):  
Marco Iván Valle‐Maldonado ◽  
José Alberto Patiño‐Medina ◽  
Carlos Pérez‐Arques ◽  
Nancy Yadira Reyes‐Mares ◽  
Irvin Eduardo Jácome‐Galarza ◽  
...  

1996 ◽  
Vol 16 (12) ◽  
pp. 6698-6706 ◽  
Author(s):  
B H Spain ◽  
K S Bowdish ◽  
A R Pacal ◽  
S F Staub ◽  
D Koo ◽  
...  

We have isolated two novel human cDNAs, gps1-1 and gps2, that suppress lethal G-protein subunit-activating mutations in the pheromone response pathway of the yeast Saccharomyces cerevisiae. Suppression of other pathway-activating events was examined. In wild-type cells, expression of either gps1-1 or gps2 led to enhanced recovery from cell cycle arrest induced by pheromone. Sequence analysis indicated that gps1-1 contains only the carboxy-terminal half of the gps1 coding sequence. The predicted gene product of gps1 has striking similarity to the protein encoded by the Arabidopsis FUS6 (COP11) gene, a negative regulator of light-mediated signal transduction that is known to be essential for normal development. A chimeric construct containing gps1 and FUS6 sequences also suppressed the yeast pheromone pathway, indicating functional conservation between these human and plant genes. In addition, when overexpressed in mammalian cells, gps1 or gps2 potently suppressed a RAS- and mitogen-activated protein kinase-mediated signal and interfered with JNK activity, suggesting that signal repression is part of their normal function. For gps1, these results are consistent with the proposed function of FUS6 (COP11) as a signal transduction repressor in plants.


Sign in / Sign up

Export Citation Format

Share Document