scholarly journals Transcriptional Response of Candida albicans upon Internalization by Macrophages

2004 ◽  
Vol 3 (5) ◽  
pp. 1076-1087 ◽  
Author(s):  
Michael C. Lorenz ◽  
Jennifer A. Bender ◽  
Gerald R. Fink

ABSTRACT The opportunistic fungal pathogen Candida albicans is both a benign gut commensal and a frequently fatal systemic pathogen. The interaction of C. albicans with the host's innate immune system is the primary factor in this balance; defects in innate immunity predispose the patient to disseminated candidiasis. Because of the central importance of phagocytic cells in defense against fungal infections, we have investigated the response of C. albicans to phagocytosis by mammalian macrophages using genomic transcript profiling. This analysis reveals a dramatic reprogramming of transcription in C. albicans that occurs in two successive steps. In the early phase cells shift to a starvation mode, including gluconeogenic growth, activation of fatty acid degradation, and downregulation of translation. In a later phase, as hyphal growth enables C. albicans to escape from the macrophage, cells quickly resume glycolytic growth. In addition, there is a substantial nonmetabolic response imbedded in the early phase, including machinery for DNA damage repair, oxidative stress responses, peptide uptake systems, and arginine biosynthesis. Further, a surprising percentage of the genes that respond specifically to macrophage contact have no known homologs, suggesting that the organism has undergone substantial evolutionary adaptations to the commensal or pathogen lifestyle. This transcriptional reprogramming is almost wholly absent in the related, but nonpathogenic, yeast Saccharomyces cerevisiae, suggesting that these large-scale and coordinated changes contribute significantly to the ability of this organism to survive and cause disease in vivo.

2000 ◽  
Vol 44 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Tetsuya Kuhara ◽  
Katsuhisa Uchida ◽  
Hideyo Yamaguchi

ABSTRACT We examined the in vivo activity of human macrophage colony-stimulating factor (hM-CSF) against lethal Candida albicans infection in mice. In C. albicans-infected mice which had been immunosuppressed with cyclophosphamide, treatment with hM-CSF at a daily dose of 8 × 105 units/kg of body weight or greater slightly but significantly prolonged survival. Furthermore, the therapeutic efficacy of amphotericin B (AMPH-B) in infected mice was enhanced by its combined use with hM-CSF, while that of fluconazole (FLCZ) was not. The activities of peritoneal macrophages and neutrophils from mice administered hM-CSF plus AMPH-B in combination for inhibition of hyphal growth of C. albicanscells and intracellular phagocytosis and killing of the cells were greater than those of comparable phagocytic cells from control mice to which hM-CSF plus AMPH-B was not administered. These results suggest that intravenous administration of hM-CSF augments the efficacy of AMPH-B by enhancing the antifungal activities of macrophages and neutrophils. Therefore, it is expected that therapy with the combination AMPH-B and hM-CSF could improve the efficacy of AMPH-B and reduce the therapeutic dose of the antifungal drug that is required.


2020 ◽  
Vol 15 (11) ◽  
pp. 1075-1090
Author(s):  
Shan Su ◽  
Xiuyun Li ◽  
Xinmei Yang ◽  
Yiman Li ◽  
Xueqi Chen ◽  
...  

Recently, the incidence of invasive fungal infections has significantly increased. Candida albicans (C. albicans) is the most common opportunistic fungal pathogen that infects humans. The limited number of available antifungal agents and the emergence of drug resistance pose difficulties to treatment, thus new antifungals are urgently needed. Through their functions in DNA replication, DNA repair and transcription, histone acetyltransferases (HATs) and histone deacetylases (HDACs) perform essential functions relating to growth, virulence, drug resistance and stress responses of C. albicans. Here, we summarize the physiological and pathological functions of HATs/HDACs, potential antifungal targets and underlying antifungal compounds that impact histone acetylation and deacetylation. We anticipate this review will stimulate the identification of new HAT/HDAC-related antifungal targets and antifungal agents.


2007 ◽  
Vol 6 (6) ◽  
pp. 931-939 ◽  
Author(s):  
Fang Li ◽  
Michael J. Svarovsky ◽  
Amy J. Karlsson ◽  
Joel P. Wagner ◽  
Karen Marchillo ◽  
...  

ABSTRACT Candida albicans is the leading cause of systemic fungal infections in immunocompromised humans. The ability to form biofilms on surfaces in the host or on implanted medical devices enhances C. albicans virulence, leading to antimicrobial resistance and providing a reservoir for infection. Biofilm formation is a complex multicellular process consisting of cell adhesion, cell growth, morphogenic switching between yeast form and filamentous states, and quorum sensing. Here we describe the role of the C. albicans EAP1 gene, which encodes a glycosylphosphatidylinositol-anchored, glucan-cross-linked cell wall protein, in adhesion and biofilm formation in vitro and in vivo. Deleting EAP1 reduced cell adhesion to polystyrene and epithelial cells in a gene dosage-dependent manner. Furthermore, EAP1 expression was required for C. albicans biofilm formation in an in vitro parallel plate flow chamber model and in an in vivo rat central venous catheter model. EAP1 expression was upregulated in biofilm-associated cells in vitro and in vivo. Our results illustrate an association between Eap1p-mediated adhesion and biofilm formation in vitro and in vivo.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Elizabeth W Hunsaker ◽  
Chen-Hsin Albert Yu ◽  
Katherine J Franz

Abstract The ability of pathogens to maintain homeostatic levels of essential biometals is known to be important for survival and virulence in a host, which itself regulates metal availability as part of its response to infection. Given this importance of metal homeostasis, we sought to address how the availability of copper in particular impacts the response of the opportunistic fungal pathogen Candida albicans to treatment with the antifungal drug fluconazole. The present study reports whole transcriptome analysis via time-course RNA-seq of C. albicans cells exposed to fluconazole with and without 10 µM supplemental CuSO4 added to the growth medium. The results show widespread impacts of small changes in Cu availability on the transcriptional response of C. albicans to fluconazole. Of the 2359 genes that were differentially expressed under conditions of cotreatment, 50% were found to be driven uniquely by exposure to both Cu and fluconazole. The breadth of metabolic processes that were affected by cotreatment illuminates a fundamental intersectionality between Cu metabolism and fungal response to drug stress. More generally, these results show that seemingly minor fluctuations in Cu availability are sufficient to shift cells’ transcriptional response to drug stress. Ultimately, the findings may inform the development of new strategies that capitalize on drug-induced vulnerabilities in metal homeostasis pathways.


2009 ◽  
Vol 77 (6) ◽  
pp. 2343-2355 ◽  
Author(s):  
Douglas A. Johnston ◽  
Karen E. Eberle ◽  
Joy E. Sturtevant ◽  
Glen E. Palmer

ABSTRACT The vacuole has crucial roles in stress resistance and adaptation of the fungal cell. Furthermore, in Candida albicans it has been observed to undergo dramatic expansion during the initiation of hyphal growth, to produce highly “vacuolated” subapical compartments. We hypothesized that these functions may be crucial for survival within the host and tissue-invasive hyphal growth. We also considered the role of the late endosome or prevacuole compartment (PVC), a distinct organelle involved in vacuolar and endocytic trafficking. We identified two Rab GTPases, encoded by VPS21 and YPT72, required for trafficking through the PVC and vacuole biogenesis, respectively. Deletion of VPS21 or YPT72 led to mild sensitivities to some cellular stresses. However, deletion of both genes resulted in a synthetic phenotype with severe sensitivity to cellular stress and impaired growth. Both the vps21Δ and ypt72Δ mutants had defects in filamentous growth, while the double mutant was completely deficient in polarized growth. The defects in hyphal growth were not suppressed by an “active” RIM101 allele or loss of the hyphal repressor encoded by TUP1. In addition, both single mutants had significant attenuation in a mouse model of hematogenously disseminated candidiasis, while the double mutant was rapidly cleared. Histological examination confirmed that the vps21Δ and ypt72Δ mutants are deficient in hyphal growth in vivo. We suggest that the PVC and vacuole are required on two levels during C. albicans infection: (i) stress resistance functions required for survival within tissue and (ii) a role in filamentous growth which may aid host tissue invasion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kemal Avican ◽  
Jehad Aldahdooh ◽  
Matteo Togninalli ◽  
A. K. M. Firoj Mahmud ◽  
Jing Tang ◽  
...  

AbstractBacterial processes necessary for adaption to stressful host environments are potential targets for new antimicrobials. Here, we report large-scale transcriptomic analyses of 32 human bacterial pathogens grown under 11 stress conditions mimicking human host environments. The potential relevance of the in vitro stress conditions and responses is supported by comparisons with available in vivo transcriptomes of clinically important pathogens. Calculation of a probability score enables comparative cross-microbial analyses of the stress responses, revealing common and unique regulatory responses to different stresses, as well as overlapping processes participating in different stress responses. We identify conserved and species-specific ‘universal stress responders’, that is, genes showing altered expression in multiple stress conditions. Non-coding RNAs are involved in a substantial proportion of the responses. The data are collected in a freely available, interactive online resource (PATHOgenex).


2017 ◽  
Vol 86 (2) ◽  
Author(s):  
Angelique N. Besold ◽  
Benjamin A. Gilston ◽  
Jana N. Radin ◽  
Christian Ramsoomair ◽  
Edward M. Culbertson ◽  
...  

ABSTRACT The opportunistic fungal pathogen Candida albicans acquires essential metals from the host, yet the host can sequester these micronutrients through a process known as nutritional immunity. How the host withholds metals from C. albicans has been poorly understood; here we examine the role of calprotectin (CP), a transition metal binding protein. When CP depletes bioavailable Zn from the extracellular environment, C. albicans strongly upregulates ZRT1 and PRA1 for Zn import and maintains constant intracellular Zn through numerous cell divisions. We show for the first time that CP can also sequester Cu by binding Cu(II) with subpicomolar affinity. CP blocks fungal acquisition of Cu from serum and induces a Cu starvation stress response involving SOD1 and SOD3 superoxide dismutases. These transcriptional changes are mirrored when C. albicans invades kidneys in a mouse model of disseminated candidiasis, although the responses to Cu and Zn limitations are temporally distinct. The Cu response progresses throughout 72 h, while the Zn response is short-lived. Notably, these stress responses were attenuated in CP null mice, but only at initial stages of infection. Thus, Zn and Cu pools are dynamic at the host-pathogen interface and CP acts early in infection to restrict metal nutrients from C. albicans.


2002 ◽  
Vol 70 (2) ◽  
pp. 921-927 ◽  
Author(s):  
Peter Staib ◽  
Marianne Kretschmar ◽  
Thomas Nichterlein ◽  
Herbert Hof ◽  
Joachim Morschhäuser

ABSTRACT The opportunistic fungal pathogen Candida albicans can cause superficial as well as systemic infections. Successful adaptation to the different host niches encountered during infection requires coordinated expression of various virulence traits, including the switch between yeast and hyphal growth forms and secretion of aspartic proteinases. Using an in vivo expression technology that is based on genetic recombination as a reporter of gene activation during experimental candidiasis in mice, we investigated whether two signal transduction pathways controlling hyphal growth, a mitogen-activated protein kinase cascade ending in the transcriptional activator Cph1p and a cyclic AMP-dependent regulatory pathway that involves the transcription factor Efg1p, also control expression of the SAP5 gene, which encodes one of the secreted aspartic proteinases and is induced by host signals soon after infection. Our results show that both transcriptional regulators are important for SAP5 activation in vivo. SAP5 expression was reduced in a cph1 mutant, although filamentous growth in infected tissue was not detectably impaired. SAP5 expression was also reduced, but not eliminated, in an efg1 null mutant, although this strain grew exclusively in the yeast form in infected tissue, demonstrating that in contrast to in vitro conditions, SAP5 activation during infection does not depend on growth of C. albicans in the hyphal form. In a cph1 efg1 double mutant, however, SAP5 expression in infected mice was almost completely eliminated, suggesting that the two signal transduction pathways are important for SAP5 expression in vivo. The avirulence of the cph1 efg1 mutant seemed to be caused not only by the inability to form hyphae but also by a loss of expression of additional virulence genes in the host.


2008 ◽  
Vol 7 (10) ◽  
pp. 1640-1648 ◽  
Author(s):  
Nozomu Hanaoka ◽  
Yukie Takano ◽  
Kazutoshi Shibuya ◽  
Hajime Fugo ◽  
Yoshimasa Uehara ◽  
...  

ABSTRACT Protein phosphatases are critical for the regulation of many cellular processes. Null mutants of 21 putative protein phosphatases of Candida albicans were constructed by consecutive allele replacement using the URA3 and ARG4 marker genes. A simple silkworm model of C. albicans infection was used to screen the panel of mutants. Four null mutant (cmp1Δ, yvh1Δ, sit4Δ, and ptc1Δ) strains showed attenuated virulence in the silkworm model relative to that of control and parental strains. Three of the mutants, the cmp1Δ, yvh1Δ, and sit4Δ mutants, had previously been identified as affecting virulence in a conventional mouse model, indicating the validity of the silkworm model screen. Disruption of the putative protein phosphatase gene PTC1 of C. albicans, which has 52% identity to the Saccharomyces cerevisiae type 2C protein phosphatase PTC1, significantly reduced virulence in the silkworm model. The mutant was also avirulent in a mouse model of disseminated candidiasis. Reintroducing either of the C. albicans PTC1 alleles into the disruptant strain, using a cassette containing either allele under the control of a constitutive ACT1 promoter, restored virulence in both infection models. Characterization of ptc1Δ revealed other phenotypic traits, including reduced hyphal growth in vitro and in vivo, and reduced extracellular proteolytic activity. We conclude that PTC1 may contribute to pathogenicity in C. albicans.


2021 ◽  
Author(s):  
Soumya Palliyil ◽  
Mark Mawer ◽  
Sami Alwafi ◽  
Lily Fogg ◽  
Giuseppe Buda De Cesare ◽  
...  

MAb based immunotherapies targeting systemic and deep-seated fungal infections are still in their early stages of development with currently no licensed antifungal mAbs available. The cell wall glycoproteins of Candida albicans are potential targets for therapeutic antibody generation due to their extracellular location and key involvement in fungal pathogenesis. We describe phage display based generation of recombinant human antibodies specifically targeting two key cell wall proteins (CWPs) in C. albicans - Utr2 and Pga31, using peptide antigens representing the surface exposed regions of CWPs at elevated levels during in vivo infection. Reformatted mAbs preferentially recognised C. albicans hyphal forms compared to yeast cells and an increased binding in cells pre-treated with caspofungin. In macrophage interaction assays, mAb pre-treatment resulted in a faster engulfment of C. albicans cells suggesting opsonophagocytosis. Finally, in a series of clinically predictive, mouse models of systemic candidiasis, our lead mAb achieved an improved survival (83%) and several log reduction of fungal burden in the kidneys, similar to levels achieved for the fungicidal drug caspofungin, and superior to any anti-Candida mAb.


Sign in / Sign up

Export Citation Format

Share Document