scholarly journals Contribution ofhlaRegulation by SaeR toStaphylococcus aureusUSA300 Pathogenesis

2019 ◽  
Vol 87 (9) ◽  
Author(s):  
Dereje D. Gudeta ◽  
Mei G. Lei ◽  
Chia Y. Lee

ABSTRACTThe SaeRS two-component system inStaphylococcus aureusis critical for regulation of many virulence genes, includinghla, which encodes alpha-toxin. However, the impact of regulation of alpha-toxin by Sae onS. aureuspathogenesis has not been directly addressed. Here, we mutated the SaeR-binding sequences in thehlaregulatory region and determined the contribution of this mutation tohlaexpression and pathogenesis in strain USA300 JE2. Western blot analyses revealed drastic reduction of alpha-toxin levels in the culture supernatants of SaeR-binding mutant in contrast to the marked alpha-toxin production in the wild type. The SaeR-binding mutation had no significant effect on alpha-toxin regulation by Agr, MgrA, and CcpA. In animal studies, we found that the SaeR-binding mutation did not contribute to USA300 JE2 pathogenesis using a rat infective endocarditis model. However, in a rat skin and soft tissue infection model, the abscesses on rats infected with the mutant were significantly smaller than the abscesses on those infected with the wild type but similar to the abscesses on those infected with asaeRmutant. These studies indicated that there is a direct effect ofhlaregulation by SaeR on pathogenesis but that the effect depends on the animal model used.

2016 ◽  
Vol 84 (6) ◽  
pp. 1917-1929 ◽  
Author(s):  
Carolyn B. Ibberson ◽  
Corey P. Parlet ◽  
Jakub Kwiecinski ◽  
Heidi A. Crosby ◽  
David K. Meyerholz ◽  
...  

Staphylococcus aureusis a leading cause of chronic biofilm infections. Hyaluronic acid (HA) is a large glycosaminoglycan abundant in mammalian tissues that has been shown to enhance biofilm formation in multiple Gram-positive pathogens. We observed that HA accumulated in anS. aureusbiofilm infection using a murine implant-associated infection model and that HA levels increased in a mutant strain lacking hyaluronidase (HysA).S. aureussecretes HysA in order to cleave HA during infection. Throughin vitrobiofilm studies with HA, thehysAmutant was found to accumulate increased biofilm biomass compared to the wild type, and confocal microscopy showed that HA is incorporated into the biofilm matrix. Exogenous addition of purified HysA enzyme dispersed HA-containing biofilms, while catalytically inactive enzyme had no impact. Additionally, induction ofhysAexpression prevented biofilm formation and also dispersed an established biofilm in the presence of HA. These observations were corroborated in the implant model, where there was decreased dissemination from anhysAmutant biofilm infection compared to theS. aureuswild type. Histopathology demonstrated that infection with anhysAmutant caused significantly reduced distribution of tissue inflammation compared to wild-type infection. To extend these studies, the impact of HA andS. aureusHysA on biofilm-like aggregates found in joint infections was examined. We found that HA contributes to the formation of synovial fluid aggregates, and HysA can disrupt aggregate formation. Taken together, these studies demonstrate that HA is a relevant component of theS. aureusbiofilm matrix and HysA is important for dissemination from a biofilm infection.


2012 ◽  
Vol 57 (4) ◽  
pp. 1577-1582 ◽  
Author(s):  
W. A. Craig ◽  
D. R. Andes

ABSTRACTCeftolozane is a new cephalosporin with potent activity againstPseudomonas aeruginosaandEnterobacteriaceae. A neutropenic murine thigh infection model was used to determine which pharmacokinetic/pharmacodynamic index and magnitude drives the efficacy of ceftolozane with Gram-negative bacilli, to compare the rates ofin vivokilling ofP. aeruginosaby ceftolozane and ceftazidime, and to determine the impact of different ratios of ceftolozane plus tazobactam onEnterobacteriaceaecontaining extended-spectrum β-lactamases (ESBLs). Neutropenic mice had 106.2-7.1CFU/thigh when treated with ceftolozane for 24 h with (i) various doses (3.12 to 1,600 mg/kg) and dosage intervals (3, 6, 12, and 24 h) against twoEnterobacteriaceaestrains, (ii) 0.39 to 800 mg/kg every 6 h for fourEnterobacteriaceaeand fourP. aeruginosastrains, and (iii) 400 or 800 mg/kg with 2:1. 4:1, and 8:1 ratios of tazobactam against fiveEnterobacteriaceaestrains with ESBLs. The pharmacokinetics of ceftolozane at 25, 100, and 400 mg/kg were linear with peak/dose values of 1.0 to 1.4 and half-lives of 12 to 14 min. T>MIC was the primary index driving efficacy. For stasis (1 log kill), T>MIC was 26.3% ± 2.1% (31.6% ± 1.6%) for wild-typeEnterobacteriaceae, 31.1% ± 4.9% (34.8% ± 4.4%) forEnterobacteriaceaewith ESBLs, and 24.0% ± 3.3% (31.5% ± 3.9%) forP. aeruginosa. At 200 mg/kg every 3 h, the rate ofin vivokilling ofP. aeruginosawas faster with ceftolozane than with ceftazidime (−0.34 to −0.41 log10CFU/thigh/h versus −0.21 to −0.24 log10CFU/thigh/h). The 2:1 ratio of ceftolozane with tazobactam was the most potent combination studied. The T>MIC required for ceftolozane is less than with other cephalosporins and may be due to more rapid killing.


2017 ◽  
Vol 83 (21) ◽  
Author(s):  
Tingting Guo ◽  
Li Zhang ◽  
Yongping Xin ◽  
ZhenShang Xu ◽  
Huiying He ◽  
...  

ABSTRACT Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497 ). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δpox mutant, while those of POX increased significantly in the Δpdh mutant. More lactate but less acetate was produced in the Δpdh mutant than in the wild-type and Δpox mutant strains, and more H2O2 (a product of the POX pathway) was produced in the Δpdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we reported that both PDH and POX worked in the aerobic conversion of lactate to acetate in L. brevis ATCC 367, in dominant and secondary roles, respectively. Our findings will further develop the theory of aerobic metabolism by LAB.


2015 ◽  
Vol 59 (4) ◽  
pp. 2113-2121 ◽  
Author(s):  
U. Malik ◽  
O. N. Silva ◽  
I. C. M. Fensterseifer ◽  
L. Y. Chan ◽  
R. J. Clark ◽  
...  

ABSTRACTStaphylococcus aureusis a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weakin vitroinhibitory activities againstS. aureus, but several had strong antibacterial activities againstS. aureusin anin vivomurine wound infection model. pYR, an immunomodulatory peptide fromRana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Eduard Melief ◽  
Shilah A. Bonnett ◽  
Edison S. Zuniga ◽  
Tanya Parish

ABSTRACT The diaminoquinazoline series has good potency against Mycobacterium tuberculosis. Resistant isolates have mutations in Rv3161c, a putative dioxygenase. We carried out metabolite analysis on a wild-type strain and an Rv3161c mutant strain after exposure to a diaminoquinazoline. The parental compound was found in intracellular extracts from the mutant but not the wild type. A metabolite consistent with a monohydroxylated form was identified in the wild type. These data support the hypothesis that Rv3161c metabolizes diaminoquinazolines in M. tuberculosis.


2018 ◽  
Vol 63 (2) ◽  
pp. e01896-18 ◽  
Author(s):  
Sebastian Wurster ◽  
Russell E. Lewis ◽  
Nathaniel D. Albert ◽  
Dimitrios P. Kontoyiannis

ABSTRACT Breakthrough mucormycosis in patients receiving isavuconazole prophylaxis or therapy has been reported. We compared the impact of isavuconazole and voriconazole exposure on the virulence of clinical isolates of Aspergillus fumigatus and different Mucorales species in a Drosophila melanogaster infection model. In contrast to A. fumigatus, a hypervirulent phenotype was found in all tested Mucorales upon preexposure to either voriconazole or isavuconazole. These findings may contribute to the explanation of breakthrough mucormycosis in isavuconazole-treated patients.


2014 ◽  
Vol 13 (6) ◽  
pp. 766-775 ◽  
Author(s):  
Timothy D. Smith ◽  
Ana M. Calvo

ABSTRACTAspergillus fumigatusis the leading causative agent of invasive aspergillosis (IA). The number of cases is on the rise, with mortality rates as high as 90% among immunocompromised patients. Molecular genetic studies inA. fumigatuscould provide novel targets to potentially set the basis for antifungal therapies. In the current study, we investigated the role of the transcription factor genemtfAinA. fumigatus. Our results revealed thatmtfAplays a role in the growth and development of the fungus. Deletion or overexpression ofmtfAleads to a slight reduction in colony growth, as well as a reduction in conidiation levels, in the overexpression strain compared to the wild-type strain. Furthermore, production of the secondary metabolite gliotoxin increased whenmtfAwas overexpressed, coinciding with an increase in the transcription levels of the gliotoxin genesgliZandgliPwith respect to the wild type. In addition, our study showed thatmtfAis also necessary for normal protease activity inA. fumigatus; deletion ofmtfAresulted in a reduction of protease activity compared to wild-type levels. Importantly, the absence ofmtfAcaused a decrease in virulence in theGalleria mellonellainfection model, indicating thatmtfAis necessary forA. fumigatuswild-type pathogenesis.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Atul K. Verma ◽  
Christopher Bauer ◽  
Vijaya Kumar Yajjala ◽  
Shruti Bansal ◽  
Keer Sun

ABSTRACT Postinfluenza methicillin-resistant Staphylococcus aureus (MRSA) infection can quickly develop into severe, necrotizing pneumonia, causing over 50% mortality despite antibiotic treatments. In this study, we investigated the efficacy of antibiotic therapies and the impact of S. aureus alpha-toxin in a model of lethal influenza virus and MRSA coinfection. We demonstrate that antibiotics primarily attenuate alpha-toxin-induced acute lethality, even though both alpha-toxin-dependent and -independent mechanisms significantly contribute to animal mortality after coinfection. Furthermore, we found that the protein synthesis-suppressing antibiotic linezolid has an advantageous therapeutic effect on alpha-toxin-induced lung damage, as measured by protein leak and lactate dehydrogenase (LDH) activity. Importantly, using a Panton-Valentine leucocidin (PVL)-negative MRSA isolate from patient sputum, we show that linezolid therapy significantly improves animal survival from postinfluenza MRSA pneumonia compared with vancomycin treatment. Rather than improved viral or bacterial control, this advantageous therapeutic effect is associated with a significantly attenuated proinflammatory cytokine response and acute lung damage in linezolid-treated mice. Together, our findings not only establish a critical role of alpha-toxin in the extreme mortality of secondary MRSA pneumonia after influenza but also provide support for the possibility that linezolid could be a more effective treatment than vancomycin to improve disease outcomes.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Olivia A. Todd ◽  
Mairi C. Noverr ◽  
Brian M. Peters

ABSTRACT Candida albicans and Staphylococcus aureus are common causes of nosocomial infections with severe morbidity and mortality. Murine polymicrobial intra-abdominal infection (IAI) with C. albicans and S. aureus results in acute mortality dependent on the secreted cytolytic effector alpha-toxin. Here, we confirmed that alpha-toxin is elevated during polymicrobial growth compared to monomicrobial growth in vitro. Therefore, this study sought to unravel the mechanism by which C. albicans drives enhanced staphylococcal alpha-toxin production. Using a combination of functional and genetic approaches, we determined that an intact agr quorum sensing regulon is necessary for enhanced alpha-toxin production during coculture and that a secreted candidal factor likely is not implicated in elevating agr activation. As the agr system is pH sensitive, we observed that C. albicans raises the pH during polymicrobial growth and that this correlates with increased agr activity and alpha-toxin production. Modulation of the pH could predictably attenuate or activate agr activity during coculture. By using a C. albicans mutant deficient in alkalinization (stp2Δ/Δ), we confirmed that modulation of the extracellular pH by C. albicans can drive agr expression and toxin production. Additionally, the use of various Candida species (C. glabrata, C. dubliniensis, C. tropicalis, C. parapsilosis, and C. krusei) demonstrated that those capable of raising the extracellular pH correlated with elevated agr activity and alpha-toxin production during coculture. Overall, we demonstrate that alkalinization of the extracellular pH by the Candida species leads to sustained activation of the staphylococcal agr system. IMPORTANCE Candida albicans and Staphylococcus aureus are commonly coisolated from central venous catheters and deep-seated infections, including intra-abdominal sepsis. Thus, they represent a significant cause of nosocomial morbidity and mortality. Yet how these organisms behave in the context of polymicrobial growth remains poorly understood. In this work, we set out to determine the mechanism by which activation of the staphylococcal agr quorum sensing system and production of its major virulence effector alpha-toxin is enhanced during coculture with C. albicans. Surprisingly, we likely ruled out that a secreted candidal factor drives this process. Instead, we demonstrated that alkalinization of the extracellular milieu by C. albicans and other Candida species correlated with elevated agr activity. Thus, we propose a mechanism where modulation of the extracellular pH by fungal opportunists can indirectly alter virulence of a bacterial pathogen. Uncovering molecular events that drive interkingdom pathogenicity mechanisms may enhance surveillance and treatment for devastating polymicrobial infections.


2016 ◽  
Vol 198 (19) ◽  
pp. 2682-2691 ◽  
Author(s):  
Yi Wang ◽  
Sok Ho Kim ◽  
Ramya Natarajan ◽  
Jason E. Heindl ◽  
Eric L. Bruger ◽  
...  

ABSTRACTIn bacteria, the functions of polyamines, small linear polycations, are poorly defined, but these metabolites can influence biofilm formation in several systems. Transposon insertions in an ornithine decarboxylase (odc) gene inAgrobacterium tumefaciens, predicted to direct synthesis of the polyamine putrescine from ornithine, resulted in elevated cellulose. Null mutants forodcgrew somewhat slowly in a polyamine-free medium but exhibited increased biofilm formation that was dependent on cellulose production. Spermidine is an essential metabolite inA. tumefaciensand is synthesized from putrescine inA. tumefaciensvia the stepwise actions of carboxyspermidine dehydrogenase (CASDH) and carboxyspermidine decarboxylase (CASDC). Exogenous addition of either putrescine or spermidine to theodcmutant returned biofilm formation to wild-type levels. Low levels of exogenous spermidine restored growth to CASDH and CASDC mutants, facilitating weak biofilm formation, but this was dampened with increasing concentrations. Norspermidine rescued growth for theodc, CASDH, and CASDC mutants but did not significantly affect their biofilm phenotypes, whereas in the wild type, it stimulated biofilm formation and depressed spermidine levels. Theodcmutant produced elevated levels of cyclic diguanylate monophosphate (c-di-GMP), exogenous polyamines modulated these levels, and expression of a c-di-GMP phosphodiesterase reversed the enhanced biofilm formation. Prior work revealed accumulation of the precursors putrescine and carboxyspermidine in the CASDH and CASDC mutants, respectively, but unexpectedly, both mutants accumulated homospermidine; here, we show that this requires a homospermidine synthase (hss) homologue.IMPORTANCEPolyamines are small, positively charged metabolites that are nearly ubiquitous in cellular life. They are often essential in eukaryotes and more variably in bacteria. Polyamines have been reported to influence the surface-attached biofilm formation of several bacteria. InAgrobacterium tumefaciens, mutants with diminished levels of the polyamine spermidine are stimulated for biofilm formation, and exogenous provision of spermidine decreases biofilm formation. Spermidine is also essential forA. tumefaciensgrowth, but the related polyamine norspermidine exogenously rescues growth and does not diminish biofilm formation, revealing that the growth requirement and biofilm control are separable. Polyamine control of biofilm formation appears to function via effects on the cellular second messenger cyclic diguanylate monophosphate, regulating the transition from a free-living to a surface-attached lifestyle.


Sign in / Sign up

Export Citation Format

Share Document