scholarly journals Fate of a Burkholderia pseudomallei Lipopolysaccharide Mutant in the Mouse Macrophage Cell Line RAW 264.7: Possible Role for the O-Antigenic Polysaccharide Moiety of Lipopolysaccharide in Internalization and Intracellular Survival

2007 ◽  
Vol 75 (9) ◽  
pp. 4298-4304 ◽  
Author(s):  
S. Arjcharoen ◽  
C. Wikraiphat ◽  
M. Pudla ◽  
K. Limposuwan ◽  
D. E. Woods ◽  
...  

ABSTRACT Burkholderia pseudomallei is a facultative intracellular gram-negative bacterium that can survive and multiply inside macrophages. One of the mechanisms by which B. pseudomallei escapes macrophage killing is by interfering with the expression of inducible nitric oxide synthase (iNOS). However, the bacterial components that modulate antimicrobial activity of the macrophage have not been fully elucidated. In the present study, we demonstrated that B. pseudomallei strain SRM117, a lipopolysaccharide (LPS) mutant that lacks the O-antigenic polysaccharide moiety, was more susceptible to macrophage killing during the early phase of infection than the parental wild-type strain (1026b). Unlike the wild type, the LPS mutant could readily stimulate Y701-STAT-1 phosphorylation (pY701-STAT-1) and interferon-regulatory factor 1 (IRF-1) expression, both of which are essential transcription factors of iNOS. Neutralizing antibody against beta interferon was able to inhibit the phosphorylation of Y701-STAT-1 and the expression of IRF-1 and iNOS, all of which resulted in an increased rate of intracellular replication. These data suggest that the O-antigenic polysaccharide moiety of B. pseudomallei modulates the host cell response, which in turn controls the intracellular fate of B. pseudomallei inside macrophages.

2013 ◽  
Vol 81 (9) ◽  
pp. 3463-3471 ◽  
Author(s):  
Pankaj Baral ◽  
Pongsak Utaisincharoen

ABSTRACTBurkholderia pseudomallei, the causative agent of melioidosis, evades macrophage killing by suppressing the TRIF-dependent pathway, leading to inhibition of inducible nitric oxide synthase (iNOS) expression. We previously demonstrated that virulent wild-typeB. pseudomalleiinhibits the TRIF-dependent pathway by upregulating sterile-α- and armadillo motif-containing protein (SARM) and by inhibiting downregulation of signal regulatory protein α (SIRPα); both molecules are negative regulators of Toll-like receptor signaling. In contrast, the less virulent lipopolysaccharide (LPS) mutant ofB. pseudomalleiis unable to exhibit these features and is susceptible to macrophage killing. However, the functional relationship of these two negative regulators in the evasion of macrophage defense has not been elucidated. We demonstrated here that SIRPα downregulation was observed after inhibition of SARM expression by small interfering RNA in wild-type-infected macrophages, indicating that SIRPα downregulation is regulated by SARM. Furthermore, this downregulation requires activation of the TRIF signaling pathway, as we observed abrogation of SIRPα downregulation as well as restricted bacterial growth in LPS mutant-infected TRIF-depleted macrophages. Although inhibition of SARM expression is correlated to SIRPα downregulation and iNOS upregulation in gamma interferon-activated wild-type-infected macrophages, these phenomena appear to bypass the TRIF-dependent pathway. Similar to live bacteria, the wild-type LPS is able to upregulate SARM and to prevent SIRPα downregulation, implying that the LPS ofB. pseudomalleimay play a crucial role in regulating the expression of these two negative regulators. Altogether, our findings show a previously unrecognized role ofB. pseudomallei-induced SARM in inhibiting SIRPα downregulation-mediated iNOS upregulation, facilitating the ability of the bacterium to multiply in macrophages.


2004 ◽  
Vol 72 (7) ◽  
pp. 4081-4089 ◽  
Author(s):  
Kara L. Cummings ◽  
Rick L. Tarleton

ABSTRACT Immune control of many intracellular pathogens, including Trypanosoma cruzi, is reported to be dependent on the production of nitric oxide. In this study, we show that mice deficient in inducible nitric oxide synthase (iNOS or NOS2) exhibit resistance to T. cruzi infection that is comparable to that of wild-type mice. This is the case for two iNOS-deficient mouse strains, Nos2tm1Lau and Nos2 N5, infected with the Brazil or Tulahuen strain of T. cruzi. In all cases, blood parasitemia, tissue parasite load, and survival rates are similar between wild-type and iNOS-deficient mice. In contrast, both wild-type and Nos2tm1Lau mice died within 32 days postinfection when treated with the nitric oxide synthase inhibitor aminoguanidine. Increased transcription of NOS1 or NOS3 is not found in iNOS-knockout (KO) mice, indicating that the absence of nitric oxide production through iNOS is not compensated for by increased production of other NOS isoforms. However, Nos2tm1Lau mice exhibit enhanced expression of tumor necrosis factor alpha, interleukin-1, and macrophage inflammatory protein 1α compared to that of wild-type mice, and these alterations may in part compensate for the lack of iNOS. These results clearly show that iNOS is not required for control of T. cruzi infection in mice.


2007 ◽  
Vol 292 (2) ◽  
pp. E615-E620 ◽  
Author(s):  
Ben A. Weissman ◽  
Chantal M. Sottas ◽  
Ping Zhou ◽  
Costantino Iadecola ◽  
Matthew P. Hardy

Immobilization stress (IMO) induces a rapid increase in glucocorticoid secretion [in rodents, corticosterone CORT)] and this is associated with decreased circulating testosterone (T) levels. Nitric oxide (NO), a reactive free radical and neurotransmitter, has been reported to be produced at higher rates in tissues such as brain during stress. The biosynthesis of T is also known to be dramatically suppressed by NO. Specifically, the inducible isoform of nitric oxide synthase (iNOS) was directly implicated in this suppression. To assess the respective roles of CORT and NO in stress-mediated inhibition of T production, adult wild-type (WT) and inducible nitric oxide synthase knockout (iNOS−/−) male mice were evaluated. Animals of each genotype were assigned to either basal control or 3-h IMO groups. Basal plasma and testicular T levels were equivalent in both genotypes, whereas testicular weights of mutant mice were significantly higher compared with WT animals. Exposure to 3-h IMO increased plasma CORT and decreased T concentrations in mice of both genotypes. Testicular T levels were also affected by stress in WT and mutant males, being sharply reduced in both genotypes. However, the concentrations of nitrite and nitrate, the stable metabolites of NO measured in testicular extracts, did not differ between control and stressed WT and iNOS−/− mice. These results support the hypothesis that CORT, but not NO, is a plausible candidate to mediate rapid stress-induced suppression of Leydig cell steroidogenesis.


2010 ◽  
Vol 192 (19) ◽  
pp. 4912-4922 ◽  
Author(s):  
Kendra H. Steele ◽  
John E. Baumgartner ◽  
Michelle Wright Valderas ◽  
R. Martin Roop

ABSTRACT Brucella strains are exposed to potentially toxic levels of H2O2 both as a consequence of their aerobic metabolism and through the respiratory burst of host phagocytes. To evaluate the relative contributions of the sole catalase KatE and the peroxiredoxin AhpC produced by these strains in defense against H2O2-mediated toxicity, isogenic katE, ahpC, and katE ahpC mutants were constructed and the phenotypic properties of these mutants compared with those of the virulent parental strain B. abortus 2308. The results of these studies indicate that AhpC is the primary detoxifier of endogenous H2O2 generated by aerobic metabolism. KatE, on the other hand, plays a major role in scavenging exogenous and supraphysiologic levels of H2O2, although this enzyme can play a supporting role in the detoxification of H2O2 of endogenous origin if AhpC is absent. B. abortus ahpC and katE mutants exhibit wild-type virulence in C57BL/6 and BALB/c mice, but the B. abortus ahpC katE double mutant is extremely attenuated, and this attenuation is not relieved in derivatives of C57BL/6 mice that lack NADPH oxidase (cybb) or inducible nitric oxide synthase (Nos2) activity. These experimental findings indicate that the generation of endogenous H2O2 represents a relevant environmental stress that B. abortus 2308 must deal with during its residence in the host and that AhpC and KatE perform compensatory roles in detoxifying this metabolic H2O2.


2004 ◽  
Vol 72 (11) ◽  
pp. 6666-6675 ◽  
Author(s):  
Robert E. Brennan ◽  
Kasi Russell ◽  
Guoquan Zhang ◽  
James E. Samuel

ABSTRACT Host control of Coxiella burnetii infections is believed to be mediated primarily by activated monocytes/macrophages. The activation of macrophages by cytokines leads to the production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) that have potent antimicrobial activities. The contributions of ROI and RNI to the inhibition of C. burnetii replication were examined in vitro by the use of murine macrophage-like cell lines and primary mouse macrophages. A gamma interferon (IFN-γ) treatment of infected cell lines and primary macrophages resulted in an increased production of nitric oxide (NO) and hydrogen peroxide (H2O2) and a significant inhibition of C. burnetii replication. The inhibition of replication was reversed in the murine cell line J774.16 upon the addition of either the inducible nitric oxide synthase (iNOS) inhibitor NG-monomethyl-l-arginine (NGMMLA) or the H2O2 scavenger catalase. IFN-γ-treated primary macrophages from iNOS−/− and p47phox−/− mice significantly inhibited replication but were less efficient at controlling infection than IFN-γ-treated wild-type macrophages. To investigate the contributions of ROI and RNI to resistance to infection, we performed in vivo studies, using C57BL/6 wild-type mice and knockout mice lacking iNOS or p47phox. Both iNOS−/− and p47phox−/− mice were attenuated in the ability to control C. burnetii infection compared to wild-type mice. Together, these results strongly support a role for both RNI and ROI in the host control of C. burnetii infection.


Circulation ◽  
2007 ◽  
Vol 116 (14) ◽  
pp. 1577-1584 ◽  
Author(s):  
Qianhong Li ◽  
Yiru Guo ◽  
Wei Tan ◽  
Qinghui Ou ◽  
Wen-Jian Wu ◽  
...  

Background— Gene therapy with inducible nitric oxide synthase (iNOS) markedly reduces myocardial infarct size; this effect is associated with cyclooxygenase-2 (COX-2) upregulation and is ablated by COX-2 inhibitors. However, pharmacological inhibitors are limited by relative lack of specificity; furthermore, the mechanism whereby iNOS gene therapy upregulates COX-2 remains unknown. Accordingly, we used genetically engineered mice to test the hypothesis that the cardioprotection afforded by iNOS gene transfer is mediated by COX-2 upregulation via a nuclear factor (NF)-κB–dependent pathway. Methods and Results— Mice received an intramyocardial injection of Av3/LacZ (LacZ group) or Av3/iNOS (iNOS group); 3 days later, myocardial infarction was produced by a 30-minute coronary occlusion followed by 4 hours of reperfusion. Among Av3/LacZ-treated mice, infarct size was similar in COX-2 −/− and wild-type groups. iNOS gene transfer (confirmed by iNOS immunoblotting and activity assays) markedly reduced infarct size in wild-type mice but failed to do so in COX-2 −/− mice. In transgenic mice with cardiac-specific expression of a dominant-negative mutant of IκBα (IκBα S32A,S36A ), the upregulation of phosphorylated IκBα, activation of NF-κB, and cardiac COX-2 protein expression 3 days after iNOS gene therapy were abrogated, which was associated with the abolishment of the cardioprotective effects afforded by iNOS gene therapy. Conclusions— These data provide strong genetic evidence that COX-2 is an obligatory downstream effector of iNOS-dependent cardioprotection and that NF-κB is a critical link between iNOS and COX-2. Thus, iNOS imparts its protective effects, at least in part, by recruiting NF-κB, leading to COX-2 upregulation. However, COX-2 does not play an important cardioprotective role under basal conditions (when iNOS is not upregulated).


Sign in / Sign up

Export Citation Format

Share Document