scholarly journals MicroRNA 155 Contributes to Host Immunity against Leishmania donovani but Is Not Essential for Resolution of Infection

2019 ◽  
Vol 87 (8) ◽  
Author(s):  
Sanjay Varikuti ◽  
Gayathri Natarajan ◽  
Greta Volpedo ◽  
Bhawana Singh ◽  
Omar Hamza ◽  
...  

ABSTRACT CD4+ T helper 1 (Th1) cells producing interferon gamma (IFN-γ) are critical for the resolution of visceral leishmaniasis (VL). MicroRNA 155 (miR155) promotes CD4+ Th1 responses and IFN-γ production by targeting suppressor of cytokine signaling-1 (SOCS1) and Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP-1) and therefore could play a role in the resolution of VL. To determine the role of miR155 in VL, we monitored the course of Leishmania donovani infection in miR155 knockout (miR155KO) and wild-type (WT) C57BL/6 mice. miR155KO mice displayed significantly higher liver and spleen parasite loads than WT controls and showed impaired hepatic granuloma formation. However, parasite growth eventually declined in miR155KO mice, suggesting the induction of a compensatory miR155-independent antileishmanial pathway. Leishmania antigen-stimulated splenocytes from miR155KO mice produced significantly lower levels of Th1-associated IFN-γ than controls. Interestingly, at later time points, levels of Th2-associated interleukin-4 (IL-4) and IL-10 were also lower in miR155KO splenocyte supernatants than in WT mice. On the other hand, miR155KO mice displayed significantly higher levels of IFN-γ, iNOS, and TNF-α gene transcripts in their livers than WT mice, indicating that distinct organ-specific antiparasitic mechanisms were involved in control of L. donovani infection in miR155KO mice. Throughout the course of infection, organs of miR155KO mice showed significantly more PDL1-expressing Ly6Chi inflammatory monocytes than WT mice. Conversely, blockade of Ly6Chi inflammatory monocyte recruitment in miR155KO mice significantly reduced parasitic loads, indicating that these cells contributed to disease susceptibility. In conclusion, we found that miR155 contributes to the control of L. donovani but is not essential for infection resolution.

2014 ◽  
Vol 193 (8) ◽  
pp. 4149-4158 ◽  
Author(s):  
Yu-Chih Wang ◽  
Chia-Ling Chen ◽  
Bor-Shyang Sheu ◽  
Yao-Jong Yang ◽  
Po-Chun Tseng ◽  
...  

2002 ◽  
Vol 277 (51) ◽  
pp. 50190-50197 ◽  
Author(s):  
Devki Nandan ◽  
Taolin Yi ◽  
Martin Lopez ◽  
Crystal Lai ◽  
Neil E. Reiner

The human leishmaniasis are persistent infections of macrophages caused by protozoa of the genusLeishmania.The chronic nature of these infections is in part related to induction of macrophage deactivation, linked to activation of the Src homology 2 domain containing tyrosine phosphatase-1 (SHP-1) in infected cells. To investigate the mechanism of SHP-1 activation, lysates ofLeishmania donovanipromastigotes were subjected to SHP-1 affinity chromatography and proteins bound to the matrix were sequenced by mass spectrometry. This resulted in the identification ofLeishmaniaelongation factor-1α (EF-1α) as a SHP-1-binding protein. PurifiedLeishmaniaEF-1α, but not host cell EF-1α, bound directly to SHP-1in vitroleading to its activation. Three independent lines of evidence indicated thatLeishmaniaEF-1α may be exported from the phagosome thereby enabling targeting of host SHP-1. First, cytosolic fractions prepared from macrophages infected with [35S]methionine-labeled organisms containedLeishmaniaEF-1α. Second, confocal, fluorescence microscopy usingLeishmania-specific antisera detectedLeishmaniaEF-1α in the cytosol of infected cells. Third, co-immunoprecipitation showed thatLeishmaniaEF-1α was associated with SHP-1in vivoin infected cells. Finally, introduction of purifiedLeishmaniaEF-1α, but not the corresponding host protein into macrophages activated SHP-1 and blocked the induction of inducible nitric-oxide synthase expression in response to interferon-γ. Thus,LeishmaniaEF-1α is identified as a novel SHP-1-binding and activating protein that recapitulates the deactivated phenotype of infected macrophages.


2005 ◽  
Vol 73 (11) ◽  
pp. 7332-7339 ◽  
Author(s):  
P. Ekchariyawat ◽  
S. Pudla ◽  
K. Limposuwan ◽  
S. Arjcharoen ◽  
S. Sirisinha ◽  
...  

ABSTRACT Burkholderia pseudomallei, the causative agent of melioidosis, is a facultative intracellular gram-negative bacterium that is able to survive and multiply in macrophages. Previously, we reported that B. pseudomallei was able to escape macrophage killing by interfering with the expression of inducible nitric oxide synthase (iNOS). In the present study, we extended this finding and demonstrated that B. pseudomallei was able to activate the expression of suppressor of cytokine signaling 3 (SOCS3) and cytokine-inducible Src homology 2-containing protein (CIS) but not SOCS1 in a mouse macrophage cell line (RAW 264.7). The expression of SOCS3 and CIS in B. pseudomallei-infected macrophages directly correlated with a decreased gamma interferon (IFN-γ) signaling response, as indicated by a reduction in Y701-STAT-1 phosphorylation (pY701-STAT-1). Moreover, a reduction in the expression of IFN-γ-induced proteins, such as interferon regulatory factor 1 (IRF-1), was observed in B. pseudomallei-infected macrophages that were treated with IFN-γ. Since pY701-STAT-1 and IRF-1 are essential transcription factors for regulating iNOS expression, the failure to activate these factors could also result in depression of iNOS expression and a loss of macrophage killing capacity. Taken together, the data indicate that the activation of SOCS3 and CIS expression in B. pseudomallei-infected macrophages interfered with IFN-γ signaling, thus allowing the bacteria to escape killing by these phagocytic cells.


2008 ◽  
Vol 76 (3) ◽  
pp. 1003-1015 ◽  
Author(s):  
Swati Bhowmick ◽  
Rajesh Ravindran ◽  
Nahid Ali

ABSTRACT Visceral leishmaniasis is deadly if not treated, and development of a vaccine with long-term immunity remains a challenge. In this study, we showed that cationic distearoyl phosphatidylcholine (DSPC) liposomes, when used as vaccine adjuvant with the immunodominant 63-kDa glycoprotein (gp63) of Leishmania donovani promastigotes, induced significant protection against progressive visceral leishmaniasis in susceptible BALB/c mice. gp63 used without adjuvant elicited partial protection but in association with liposomes exhibited marked resistance in both the livers and spleens of the mice challenged 10 days after the last vaccination. The protective efficacy of liposomal gp63 vaccination was dose dependent, with 2.5 μg of protein showing optimal protection. The immunity conferred by this vaccine formulation was durable, as mice challenged 12 weeks after immunization were still protected, and the infection was controlled for at least 3 months postchallenge. Production of gamma interferon (IFN-γ) and interleukin-4 (IL-4) by splenic T cells, and of serum immunoglobulin G1 (IgG1) and IgG2a following immunization, suggested that a mixed Th1/Th2 response had been induced following immunization. However, control of disease progression and parasitic burden in mice vaccinated with gp63 in cationic DSPC liposomes was associated with enhancement of antigen-specific IFN-γ and downregulation of IL-4, demonstrating a Th1 bias. Long-term immunity elicited by this vaccine corresponded to, in addition to the presence of antigen-specific Th1, CD8+ T-cell responses. Our results demonstrated that stable cationic liposomes containing gp63 acted as a potent adjuvant for protein antigen to induce long-term protection against L. donovani that represents an alternative to DNA vaccination.


2012 ◽  
Vol 81 (3) ◽  
pp. 777-788 ◽  
Author(s):  
Jin Qiu ◽  
Michal A. Olszewski ◽  
Peter R. Williamson

ABSTRACTThe fungusCryptococcus neoformanshas emerged as a major cause of meningoencephalitis worldwide. Host response to the fungus involves both innate and adaptive immunity, but fungal genes that modulate these processes are poorly understood. Previous studies demonstrated attenuated virulence of a mutant of avirulence-associatedDEAD-box protein (VAD1) in mice, despite normal growth at host temperatures, suggesting modulation of the immune response. In the present study, theΔvad1mutant demonstrated progressive clearance from lung and was unable to induce pathological lesions or to cause extrapulmonary disease, despite retaining its ability to grow in mouse serum and a J774.16 macrophage cell line. Pulmonary clearance occurred with a minimal cellular infiltrate, marked by reduced CD4 cells, CD11b+Ly6Chighmonocytes, and F4/80+macrophages, but the mutant strain retained recruitment of CD8 cells, compared to infections with wild-type fungi. Adaptive cytokine responses were reduced, including Th1, Th2, and Th17 cytokines; however, early gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) responses were retained while nonprotective interleukin 4 (IL-4) and IL-5 were diminished. Furthermore, theΔvad1mutant was controlled in lungs despite CD4/CD8 cell depletion. These data, along with improved phagocytosis by macrophages and increases in early/innate IL-1α, IFN-γ, and chemokines elicited in the lungs within 3 days of infection with theΔvad1mutant, indicate thatVAD1expression reduces innate recognition ofC. neoformans, rendering the yeast resistant to elimination by the innate mechanisms of host defense. Thus, our studies define a novel role of the cryptococcal Vad1 protein as a central regulator of cryptococcal virulence and illustrate that Vad1 promotes microbe resistance to innate host defenses.


Blood ◽  
2005 ◽  
Vol 105 (2) ◽  
pp. 592-599 ◽  
Author(s):  
Marianna Kulka ◽  
Dean D. Metcalfe

Abstract T-helper 1 (TH1) (interferon-γ [IFN-γ]) and TH2 (interleukin-4 [IL-4] and IL-5) cytokines have been variably reported to alter human mast cell numbers in complex culture systems. The effects of these cytokines on the kinetics of cell division and cell death are unknown, and their effect on mast cell behavior is relevant to anticipate the consequences of in vivo strategies that alter cytokine levels. To determine the effect of these cytokines on stem cell factor (SCF)–dependent human mast cell production, we used highresolution tracking of cell division and correlated the results with cell apoptosis, expression of Kit, and mast cell degranulation. When IFN-γ, IL-5, or IL-4 was administered over 8 weeks, we found each cytokine decreased the mast number through a different mechanism. IFN-γ inhibited early progenitor cell division, IL-4 down-regulated early Kit expression, and IL-5 blocked later cell division. Further, IL-4 and IFN-γ had the greatest suppressive effect on degranulation and FcϵRI expression. When these cytokines were administered to mature mast cells, IFN-γ and IL-5 had no effect on degranulation and cell division, but IL-4 induced division and potentiated FcϵRI-mediated degranulation. Thus, exposure of human mast cells to IL-4, IL-5, and IFN-γ during growth and differentiation generally down-regulated mast cell number and function, whereas IL-4 increased mature mast cell division and degranulation.


2002 ◽  
Vol 70 (1) ◽  
pp. 147-152 ◽  
Author(s):  
Nicole P. Juffermans ◽  
Jaklien C. Leemans ◽  
Sandrine Florquin ◽  
Annelies Verbon ◽  
Arend H. Kolk ◽  
...  

ABSTRACT Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs activate immune cells to produce cytokines. CpG ODNs protect mice against infections with intracellular bacteria by the induction of a T helper 1 (Th1) response. To determine the effect of CpG ODNs in pulmonary tuberculosis, mice were treated with CpG ODNs or control ODNs at the time of intranasal infection. CpG ODNs reduced mycobacterial outgrowth for up to 5 weeks after Mycobacterium tuberculosis infection and were associated with a decrease in inflammation in lung tissue. CpG treatment was also associated with elevated levels of gamma interferon (IFN-γ) and decreased levels of interleukin 4 in the lungs and an increased capacity of splenocytes to secrete Th1-type cytokines. CpG ODNs given 2 weeks after infection were still able to reduce mycobacterial outgrowth and to enhance a Th1 response 5 weeks postinfection. Administration of CpG ODNs to IFN-γ-gene-deficient mice failed to reduce mycobacterial outgrowth. These data suggest that CpG ODNs improve host defense during pulmonary tuberculosis by an IFN-γ-dependent mechanism.


2014 ◽  
Vol 82 (4) ◽  
pp. 1692-1697 ◽  
Author(s):  
Alanna M. Spees ◽  
Dawn D. Kingsbury ◽  
Tamding Wangdi ◽  
Mariana N. Xavier ◽  
Renée M. Tsolis ◽  
...  

ABSTRACTGamma interferon (IFN-γ) is an important driver of intestinal inflammation during colitis caused bySalmonella entericaserovar Typhimurium. Here we used the mouse colitis model to investigate the cellular sources of IFN-γ in the cecal mucosa during the acute phase of anS. Typhimurium infection. While IFN-γ staining was detected in T cells, NK cells, and inflammatory monocytes at 2 days after infection, the majority of IFN-γ-positive cells in the cecal mucosa were neutrophils. Furthermore, neutrophil depletion blunted mucosalIfngexpression and reduced the severity of intestinal lesions duringS. Typhimurium infection. We conclude that neutrophils are a prominent cellular source of IFN-γ during the innate phase ofS. Typhimurium-induced colitis.


2014 ◽  
Vol 83 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Steve Oghumu ◽  
James C. Stock ◽  
Sanjay Varikuti ◽  
Ran Dong ◽  
Cesar Terrazas ◽  
...  

Cutaneous leishmaniasis, caused mainly byLeishmania major, an obligate intracellular parasite, is a disfiguring disease characterized by large skin lesions and is transmitted by a sand fly vector. We previously showed that the chemokine receptor CXCR3 plays a critical role in mediating resistance to cutaneous leishmaniasis caused byLeishmania major. Furthermore, T cells fromL. major-susceptible BALB/c but notL. major-resistant C57BL/6 mice fail to efficiently upregulate CXCR3 upon activation. We therefore examined whether transgenic expression of CXCR3 on T cells would enhance resistance toL. majorinfection in susceptible BALB/c mice. We generated BALB/c and C57BL/6 transgenic mice, which constitutively overexpressed CXCR3 under a CD2 promoter, and then examined the outcomes withL. majorinfection. Contrary to our hypothesis, transgenic expression of CXCR3 (CXCR3Tg) on T cells of BALB/c mice resulted in increased lesion sizes and parasite burdens compared to wild-type (WT) littermates afterL. majorinfection. Restimulated lymph node cells fromL. major-infected BALB/c-CXCR3Tgmice produced more interleukin-4 (IL-4) and IL-10 and less gamma interferon (IFN-γ). Cells in draining lymph nodes from BALB/c-CXCR3Tgmice showed enhanced Th2 and reduced Th1 cell accumulation associated with increased neutrophils and inflammatory monocytes. However, monocytes displayed an immature phenotype which correlated with increased parasite burdens. Interestingly, transgenic expression of CXCR3 on T cells did not impact the outcome ofL. majorinfection in C57BL/6 mice, which mounted a predominantly Th1 response and spontaneously resolved their infection similar to WT littermates. Our findings demonstrate that transgenic expression of CXCR3 on T cells increases susceptibility of BALB/c mice toL. major.


2013 ◽  
Vol 81 (7) ◽  
pp. 2318-2326 ◽  
Author(s):  
Henry W. Murray ◽  
Yunhua Zhang ◽  
Yan Zhang ◽  
Vanitha S. Raman ◽  
Steven G. Reed ◽  
...  

ABSTRACTIn livers of susceptible but self-curing C57BL/6 mice, intracellularLeishmania donovaniinfection enhanced Toll-like receptor 4 (TLR4) and TLR2 gene expression. In the liver, infected TLR4−/−mice showed reduced gamma interferon (IFN-γ), tumor necrosis factor (TNF), and inducible nitric oxide synthase (iNOS) mRNA expression, higher-level and slowly resolving infection, delayed granuloma formation, and little response to low-dose chemotherapy; in serum, the ratio of IFN-γ to interleukin 10 (IL-10) activity was decreased by 50%. In contrast, in TLR2−/−mice, control of liver infection, parasite killing, and granuloma assembly were accelerated and chemotherapy's efficacy enhanced. In livers of infected TLR2−/−mice, mRNA expression was not increased for inflammatory cytokines or iNOS or decreased for IL-10; however, the serum IFN-γ/IL-10 ratio was increased 6.5-fold and minimal responses to IL-10 receptor blockade suggested downregulated IL-10. In established infection in wild-type mice, blockading TLR2 induced parasite killing and triggering TLR4 strengthened resistance and promoted chemotherapy's effect. Thus, in experimentalL. donovaniinfection in the liver, TLR4 signaling upregulates and TLR2 signaling downregulates macrophage antileishmanial activity, making both receptors potential therapeutic targets in visceral leishmaniasis for engagement (TLR4) or blockade (TLR2).


Sign in / Sign up

Export Citation Format

Share Document