scholarly journals Identification of Staphylococcus aureus Proteins Recognized by the Antibody-Mediated Immune Response to a Biofilm Infection

2006 ◽  
Vol 74 (6) ◽  
pp. 3415-3426 ◽  
Author(s):  
Rebecca A. Brady ◽  
Jeff G. Leid ◽  
Anne K. Camper ◽  
J. William Costerton ◽  
Mark E. Shirtliff

ABSTRACT Staphylococcus aureus causes persistent, recurrent infections (e.g., osteomyelitis) by forming biofilms. To survey the antibody-mediated immune response and identify those proteins that are immunogenic in an S. aureus biofilm infection, the tibias of rabbits were infected with methicillin-resistant S. aureus to produce chronic osteomyelitis. Sera were collected prior to infection and at 14, 28, and 42 days postinfection. The sera were used to perform Western blot assays on total protein from biofilm grown in vitro and separated by two-dimensional gel electrophoresis. Those proteins recognized by host antibodies in the harvested sera were identified via matrix-assisted laser desorption ionization-time of flight analysis. Using protein from mechanically disrupted total and fractionated biofilm protein samples, we identified 26 and 22 immunogens, respectively. These included a cell surface-associated β-lactamase, lipoprotein, lipase, autolysin, and an ABC transporter lipoprotein. Studies were also performed using microarray analyses and confirmed the biofilm-specific up-regulation of most of these genes. Therefore, although the biofilm antigens are recognized by the immune system, the biofilm infection can persist. However, these proteins, when delivered as vaccines, may be important in directing the immune system toward an early and effective antibody-mediated response to prevent chronic S. aureus infections. Previous works have identified S. aureus proteins that are immunogenic during acute infections, such as sepsis. However, this is the first work to identify these immunogens during chronic S. aureus biofilm infections and to simultaneously show the global relationship between the antigens expressed during an in vivo infection and the corresponding in vitro transcriptomic and proteomic gene expression levels.

2020 ◽  
Vol 16 (8) ◽  
pp. 1219-1228
Author(s):  
Tianxing Guo ◽  
Weiwei Lin ◽  
Wenshu Chen ◽  
Yanyun Huang ◽  
Lihuan Zhu ◽  
...  

The emerging of cancer immunotherapy is a great progress in cancer therapy. However, accumulating evidences have shown that tumor microenvironment (TME) exerted strong inhibition effects on cancer immunotherapy. In order to solve this issue, a cell membrane vehicle (CMV) was developed and employed to encapsulate both chlorins e6 (Ce6) and sorafenib (Sfn). The obtained drug delivery system (DDS, CMV/C-S was expected to enhance the immune response in cancer therapy by remodeling the TME. The results showed that CMV/C-S was highly stable under physiological environment with responsive drug release upon laser irradiations and high tumor targetability, which all contributed to promising anticancer performance in vitro / in vivo. Especially, the photodynamic nature of Ce6 could exert significant immunogenic cell death (ICD) to trigger immune response. At the same time, with the TME regulation effects of Sfn, the outcome of cancer immunotherapy was significantly enhanced as compare to mono-therapies. The study offers a novel approach for effective cancer immunotherapy.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Angelo A. Leto Barone ◽  
Saami Khalifian ◽  
W. P. Andrew Lee ◽  
Gerald Brandacher

Adipose-derived stromal cells (ASCs) are often referred to as adipose-derived stem cells due to their potential to undergo multilineage differentiation. Their promising role in tissue engineering and ability to modulate the immune system are the focus of extensive research. A number of clinical trials using ASCs are currently underway to better understand the role of such cell niche in enhancing or suppressing the immune response. If governable, such immunoregulatory role would find application in several conditions in which an immune response is present (i.e., autoimmune conditions) or feared (i.e., solid organ or reconstructive transplantation). Although allogeneic ASCs have been shown to prevent acute GvHD in both preclinical and clinical studies, their potential warrants further investigation. Well-designed and standardized clinical trials are necessary to prove the role of ASCs in the treatment of immune disorders or prevention of tissue rejection. In this paper we analyze the current literature on the role of ASCs in immunomodulationin vitroandin vivoand discuss their potential in regulating the immune system in the context of transplantation.


Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1038
Author(s):  
Rahul Chatterjee ◽  
Panchanan Sahoo ◽  
Soumya Ranjan Mahapatra ◽  
Jyotirmayee Dey ◽  
Mrinmoy Ghosh ◽  
...  

Staphylococcus aureus is one of the most notorious Gram-positive bacteria with a very high mortality rate. The WHO has listed S. aureus as one of the ESKAPE pathogens requiring urgent research and development efforts to fight against it. Yet there is a major layback in the advancement of effective vaccines against this multidrug-resistant pathogen. SdrD and SdrE proteins are attractive immunogen candidates as they are conserved among all the strains and contribute specifically to bacterial adherence to the host cells. Furthermore, these proteins are predicted to be highly antigenic and essential for pathogen survival. Therefore, in this study, using the immunoinformatics approach, a novel vaccine candidate was constructed using highly immunogenic conserved T-cell and B-cell epitopes along with specific linkers, adjuvants, and consequently modeled for docking with human Toll-like receptor 2. Additionally, physicochemical properties, secondary structure, disulphide engineering, and population coverage analysis were also analyzed for the vaccine. The constructed vaccine showed good results of worldwide population coverage and a promising immune response. For evaluation of the stability of the vaccine-TLR-2 docked complex, a molecular dynamics simulation was performed. The constructed vaccine was subjected to in silico immune simulations by C-ImmSim and Immune simulation significantly provided high levels of immunoglobulins, T-helper cells, T-cytotoxic cells, and INF-γ. Lastly, upon cloning, the vaccine protein was reverse transcribed into a DNA sequence and cloned into a pET28a (+) vector to ensure translational potency and microbial expression. The overall results of the study showed that the designed novel chimeric vaccine can simultaneously elicit humoral and cell-mediated immune responses and is a reliable construct for subsequent in vivo and in vitro studies against the pathogen.


2013 ◽  
Vol 82 (3) ◽  
pp. 1017-1029 ◽  
Author(s):  
Carmen Gil ◽  
Cristina Solano ◽  
Saioa Burgui ◽  
Cristina Latasa ◽  
Begoña García ◽  
...  

ABSTRACTTheStaphylococcus aureusbiofilm mode of growth is associated with several chronic infections that are very difficult to treat due to the recalcitrant nature of biofilms to clearance by antimicrobials. Accordingly, there is an increasing interest in preventing the formation ofS. aureusbiofilms and developing efficient antibiofilm vaccines. Given the fact that during a biofilm-associated infection, the first primary interface between the host and the bacteria is the self-produced extracellular matrix, in this study we analyzed the potential of extracellular proteins found in the biofilm matrix to induce a protective immune response againstS. aureusinfections. By using proteomic approaches, we characterized the exoproteomes of exopolysaccharide-based and protein-based biofilm matrices produced by two clinicalS. aureusstrains. Remarkably, results showed that independently of the nature of the biofilm matrix, a common core of secreted proteins is contained in both types of exoproteomes. Intradermal administration of an exoproteome extract of an exopolysaccharide-dependent biofilm induced a humoral immune response and elicited the production of interleukin 10 (IL-10) and IL-17 in mice. Antibodies against such an extract promoted opsonophagocytosis and killing ofS. aureus. Immunization with the biofilm matrix exoproteome significantly reduced the number of bacterial cells inside a biofilm and on the surrounding tissue, using anin vivomodel of mesh-associated biofilm infection. Furthermore, immunized mice also showed limited organ colonization by bacteria released from the matrix at the dispersive stage of the biofilm cycle. Altogether, these data illustrate the potential of biofilm matrix exoproteins as a promising candidate multivalent vaccine againstS. aureusbiofilm-associated infections.


2017 ◽  
Vol 30 (4) ◽  
pp. 887-917 ◽  
Author(s):  
Elisabeth Hodille ◽  
Warren Rose ◽  
Binh An Diep ◽  
Sylvain Goutelle ◽  
Gerard Lina ◽  
...  

SUMMARY Staphylococcus aureus is often involved in severe infections, in which the effects of bacterial virulence factors have great importance. Antistaphylococcal regimens should take into account the different effects of antibacterial agents on the expression of virulence factors and on the host's immune response. A PubMed literature search was performed to select relevant articles on the effects of antibiotics on staphylococcal toxin production and on the host immune response. Information was sorted according to the methods used for data acquisition (bacterial strains, growth models, and antibiotic concentrations) and the assays used for readout generation. The reported mechanisms underlying S. aureus virulence modulation by antibiotics were reviewed. The relevance of in vitro observations is discussed in relation to animal model data and to clinical evidence extracted from case reports and recommendations on the management of toxin-related staphylococcal diseases. Most in vitro data point to a decreased level of virulence expression upon treatment with ribosomally active antibiotics (linezolid and clindamycin), while cell wall-active antibiotics (beta-lactams) mainly increase exotoxin production. In vivo studies confirmed the suppressive effect of clindamycin and linezolid on virulence expression, supporting their utilization as a valuable management strategy to improve patient outcomes in cases of toxin-associated staphylococcal disease.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
S. Viganò ◽  
M. Perreau ◽  
G. Pantaleo ◽  
A. Harari

The immune system has evolved to allow robust responses against pathogens while avoiding autoimmunity. This is notably enabled by stimulatory and inhibitory signals which contribute to the regulation of immune responses. In the presence of a pathogen, a specific and effective immune response must be induced and this leads to antigen-specific T-cell proliferation, cytokines production, and induction of T-cell differentiation toward an effector phenotype. After clearance or control of the pathogen, the effector immune response must be terminated in order to avoid tissue damage and chronic inflammation and this process involves coinhibitory molecules. When the immune system fails to eliminate or control the pathogen, continuous stimulation of T cells prevents the full contraction and leads to the functional exhaustion of effector T cells. Several evidences bothin vitroandin vivosuggest that this anergic state can be reverted by blocking the interactions between coinhibitory molecules and their ligands. The potential to revert exhausted or inactivated T-cell responses following selective blocking of their function made these markers interesting targets for therapeutic interventions in patients with persistent viral infections or cancer.


2014 ◽  
Vol 58 (10) ◽  
pp. 5841-5847 ◽  
Author(s):  
Qiaobin Xiao ◽  
Sergei Vakulenko ◽  
Mayland Chang ◽  
Shahriar Mobashery

ABSTRACTStaphylococcus aureusis a leading cause of hospital- and community-acquired infections, which exhibit broad resistance to various antibiotics. We recently disclosed the discovery of the oxadiazole class of antibiotics, which hasin vitroandin vivoactivities against methicillin-resistantS. aureus(MRSA). We report herein that MmpL, a putative member of the resistance, nodulation, and cell division (RND) family of proteins, contributes to oxadiazole resistance in theS. aureusstrain COL. Through serial passages, we generated twoS. aureusCOL variants that showed diminished susceptibilities to an oxadiazole antibiotic. The MICs for the oxadiazole against one strain (designatedS. aureusCOLI) increased reproducibly 2-fold (to 4 μg/ml), while against the other strain (S. aureusCOLR), they increased >4-fold (to >8 μg/ml, the limit of solubility). The COLRstrain was derived from the COLIstrain. Whole-genome sequencing revealed 31 mutations inS. aureusCOLR, of which 29 were shared with COLI. Consistent with our previous finding that oxadiazole antibiotics inhibit cell wall biosynthesis, we found 13 mutations that occurred either in structural genes or in promoters of the genes of the cell wall stress stimulon. Two unique mutations inS. aureusCOLRwere substitutions in two genes that encode the putative thioredoxin (SACOL1794) and MmpL (SACOL2566). A role formmpLin resistance to oxadiazoles was discerned from gene deletion and complementation experiments. To our knowledge, this is the first report that a cell wall-acting antibiotic selects for mutations in the cell wall stress stimulon and the first to implicate MmpL in resistance to antibiotics inS. aureus.


2020 ◽  
Vol 40 (04) ◽  
pp. 519-522
Author(s):  
Yalu Ji

Bovine mastitis is an inflammatory response mainly caused by Staphylococcus aureus. Lysin is a cell wall hydrolase encoded and synthesized by a bacteriophage, which can kill specific Gram-positive bacteria. In this study, phage lysin “LysGH15” is used to treat the mice mastitis caused by S. aureus. The purified lysGH15 showed strong bactericidal activity in vitro. When treated with 25μg/mL of the LysGH15, the bacterial counts of S. aureus dropped approximately 5 log units within 10 min. In the in vivo experiments, the administration of LysGH15 significantly (P<0.05) reduced the colonies of S. aureus and alleviated damage to the breast tissue. Also, the levels of IL-6 and TNF-α in breast tissue were significantly decreased. It indicates that the LysGH15 can effectively treat the murine mastitis caused by S. aureus. This study demonstrated the potential of LysGH15 as an alternative to antibiotics for treating bovine mastitis caused by S. aureus


2021 ◽  
Vol 12 ◽  
Author(s):  
Ling Zhou ◽  
Huiguo Liu ◽  
Kui Liu ◽  
Shuang Wei

Gold compounds are not only well-explored for cytotoxic effects on tumors, but are also known to interact with the cancer immune system. The immune system deploys innate and adaptive mechanisms to protect against pathogens and prevent malignant transformation. The combined action of gold compounds with the activated immune system has shown promising results in cancer therapy through in vivo and in vitro experiments. Gold compounds are known to induce innate immune responses; however, these responses may contribute to adaptive immune responses. Gold compounds play the role of a major hapten that acts synergistically in innate immunity. Gold compounds support cancer cell antigenicity and promote anti-tumor immune response by inducing the release of CRT, ATP, HMGB1, HSP, and NKG2D to enhance immunogenicity. Gold compounds affect various immune cells (including suppressor regulatory T cells), inhibit myeloid derived suppressor cells, and enhance the function and number of dendritic cells. Gold nanoparticles (AuNPs) have potential for improving the effect of immunotherapy and reducing the toxicity and side effects of the treatment process. Thus, AuNPs provide an ideal opportunity for exploring the combination of anticancer gold compounds and immunotherapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document