scholarly journals Role of the Agr-Like Quorum-Sensing System in Regulating Toxin Production by Clostridium perfringens Type B Strains CN1793 and CN1795

2012 ◽  
Vol 80 (9) ◽  
pp. 3008-3017 ◽  
Author(s):  
Jianming Chen ◽  
Bruce A. McClane

ABSTRACTClostridium perfringenstype B causes enteritis and enterotoxemia in domestic animals. By definition, these bacteria must produce alpha toxin (CPA), beta toxin (CPB) and epsilon toxin (ETX) although most type B strains also produce perfringolysin O (PFO) and beta2 toxin (CPB2). A recently identified Agr-like quorum-sensing (QS) system inC. perfringenscontrols all toxin production by surveyed type A, C, and D strains, but whether this QS is involved in regulating toxin production by type B strains has not been explored. Therefore, the current study introducedagrBnull mutations into type B strains CN1795 and CN1793. Both type BagrBnull mutants exhibited reduced levels of CPB, PFO, and CPA in their culture supernatants, and this effect was reversible by complementation. The reduced presence of CPB in culture supernatant involved decreasedcpbtranscription. In contrast, theagrBnull mutants of both type B strains retained wild-type production levels of ETX and CPB2. In a Caco-2 cell model of enteritis, culture supernatants of the type BagrBnull mutants were less cytotoxic than supernatants of their wild-type parents. However, in an MDCK cellin vitromodel for enterotoxemic effects, supernatants from theagrBnull mutants or wild-type parents were equally cytotoxic after trypsin activation. Coupling these and previous results, it is now evident that strain-dependent variations exist in Agr-like QS system regulation ofC. perfringenstoxin production. The cell culture results further support a role for trypsin in determining which toxins contribute to disease involving type B strains.

mBio ◽  
2011 ◽  
Vol 2 (6) ◽  
Author(s):  
Jianming Chen ◽  
Julian I. Rood ◽  
Bruce A. McClane

ABSTRACT Clostridium perfringens type B and D strains cause enterotoxemias and enteritis in livestock after proliferating in the intestines and producing epsilon-toxin (ETX), alpha-toxin (CPA), and, usually, perfringolysin O (PFO). Although ETX is one of the most potent bacterial toxins, the regulation of ETX production by type B or D strains remains poorly understood. The present work determined that the type D strain CN3718 upregulates production of ETX upon close contact with enterocyte-like Caco-2 cells. This host cell-induced upregulation of ETX expression was mediated at the transcriptional level. Using an isogenic agrB null mutant and complemented strain, the agr operon was shown to be required when CN3718 produces ETX in broth culture or, via a secreted signal consistent with a quorum-sensing (QS) effect, upregulates ETX production upon contact with host cells. These findings provide the first insights into the regulation of ETX production, as well as additional evidence that the Agr-like QS system functions as a global regulator of C. perfringens toxin production. Since it was proposed previously that the Agr-like QS system regulates C. perfringens gene expression via the VirS/VirR two-component regulatory system, an isogenic virR null mutant of CN3718 was constructed to evaluate the importance of VirS/VirR for CN3718 toxin production. This mutation affected production of CPA and PFO, but not ETX, by CN3718. These results provide the first indication that C. perfringens toxin expression regulation by the Agr-like quorum-sensing system may not always act via the VirS/VirR two-component system. IMPORTANCE Mechanisms by which Clostridium perfringens type B and D strains regulate production of epsilon-toxin (ETX), a CDC class B select toxin, are poorly understood. Production of several other toxins expressed by C. perfringens is wholly or partially regulated by both the Agr-like quorum-sensing (QS) system and the VirS/VirR two-component regulatory system, so the present study tested whether ETX expression by type D strain CN3718 also requires these regulatory systems. The agr operon was shown to be essential for signaling CN3718 to produce ETX in broth culture or to upregulate ETX production upon close contact with enterocyte-like Caco-2 cells, which may have pathogenic relevance since ETX is produced intestinally. However, ETX production remained at wild-type levels after inactivation of the VirS/VirR system in CN3718. These findings provide the first information regarding regulation of ETX production and suggest Agr-like QS toxin production regulation in C. perfringens does not always require the VirS/VirR system.


mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Mauricio A. Navarro ◽  
Jihong Li ◽  
Juliann Beingesser ◽  
Bruce A. McClane ◽  
Francisco A. Uzal

ABSTRACT Clostridium perfringens type A is involved in gas gangrene in humans and animals. Following a traumatic injury, rapid bacterial proliferation and exotoxin production result in severe myonecrosis. C. perfringens alpha toxin (CPA) and perfringolysin (PFO) are the main virulence factors responsible for the disease. Recent in vitro studies have identified an Agr-like quorum-sensing (QS) system in C. perfringens that regulates the production of both toxins. The system is composed of an AgrB membrane transporter and an AgrD peptide that interacts with a two-component regulatory system in response to fluctuations in the cell population density. In addition, a synthetic peptide named 6-R has been shown to interfere with this signaling mechanism, affecting the function of the Agr-like QS system in vitro. In the present study, C. perfringens type A strain ATCC 3624 and an isogenic agrB-null mutant were tested in a mouse model of gas gangrene. When mice were intramuscularly challenged with 106 CFU of wild-type ATCC 3624, severe myonecrosis and leukocyte aggregation occurred by 4 h. Similar numbers of an agrB-null mutant strain produced significantly less severe changes in the skeletal muscle of challenged mice. Complementation of the mutant to regain agrB expression restored virulence to wild-type levels. The burdens of all three C. perfringens strains in infected muscle were similar. In addition, animals injected intramuscularly with wild-type ATCC 3624 coincubated with the 6-R peptide developed less severe microscopic changes. This study provides the first in vivo evidence that the Agr-like QS system is important for C. perfringens type A-mediated gas gangrene. IMPORTANCE Clostridium perfringens type A strains produce toxins that are responsible for clostridial myonecrosis, also known as gas gangrene. Toxin production is regulated by an Agr-like quorum-sensing (QS) system that responds to changes in cell population density. In this study, we investigated the importance of this QS system in a mouse model of gas gangrene. Mice challenged with a C. perfringens strain with a nonfunctional regulatory system developed less severe changes in the injected skeletal muscle compared to animals receiving the wild-type strain. In addition, a synthetic peptide was able to decrease the effects of the QS in this disease model. These studies provide new understanding of the pathogenesis of gas gangrene and identified a potential therapeutic target to prevent the disease.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Olivia A. Todd ◽  
Mairi C. Noverr ◽  
Brian M. Peters

ABSTRACT Candida albicans and Staphylococcus aureus are common causes of nosocomial infections with severe morbidity and mortality. Murine polymicrobial intra-abdominal infection (IAI) with C. albicans and S. aureus results in acute mortality dependent on the secreted cytolytic effector alpha-toxin. Here, we confirmed that alpha-toxin is elevated during polymicrobial growth compared to monomicrobial growth in vitro. Therefore, this study sought to unravel the mechanism by which C. albicans drives enhanced staphylococcal alpha-toxin production. Using a combination of functional and genetic approaches, we determined that an intact agr quorum sensing regulon is necessary for enhanced alpha-toxin production during coculture and that a secreted candidal factor likely is not implicated in elevating agr activation. As the agr system is pH sensitive, we observed that C. albicans raises the pH during polymicrobial growth and that this correlates with increased agr activity and alpha-toxin production. Modulation of the pH could predictably attenuate or activate agr activity during coculture. By using a C. albicans mutant deficient in alkalinization (stp2Δ/Δ), we confirmed that modulation of the extracellular pH by C. albicans can drive agr expression and toxin production. Additionally, the use of various Candida species (C. glabrata, C. dubliniensis, C. tropicalis, C. parapsilosis, and C. krusei) demonstrated that those capable of raising the extracellular pH correlated with elevated agr activity and alpha-toxin production during coculture. Overall, we demonstrate that alkalinization of the extracellular pH by the Candida species leads to sustained activation of the staphylococcal agr system. IMPORTANCE Candida albicans and Staphylococcus aureus are commonly coisolated from central venous catheters and deep-seated infections, including intra-abdominal sepsis. Thus, they represent a significant cause of nosocomial morbidity and mortality. Yet how these organisms behave in the context of polymicrobial growth remains poorly understood. In this work, we set out to determine the mechanism by which activation of the staphylococcal agr quorum sensing system and production of its major virulence effector alpha-toxin is enhanced during coculture with C. albicans. Surprisingly, we likely ruled out that a secreted candidal factor drives this process. Instead, we demonstrated that alkalinization of the extracellular milieu by C. albicans and other Candida species correlated with elevated agr activity. Thus, we propose a mechanism where modulation of the extracellular pH by fungal opportunists can indirectly alter virulence of a bacterial pathogen. Uncovering molecular events that drive interkingdom pathogenicity mechanisms may enhance surveillance and treatment for devastating polymicrobial infections.


2019 ◽  
Vol 202 (6) ◽  
Author(s):  
Hector Gabriel Morales-Filloy ◽  
Yaqing Zhang ◽  
Gabriele Nübel ◽  
Shilpa Elizabeth George ◽  
Natalya Korn ◽  
...  

ABSTRACT Nicotinamide adenosine dinucleotide (NAD) has been found to be covalently attached to the 5′ ends of specific RNAs in many different organisms, but the physiological consequences of this modification are largely unknown. Here, we report the occurrence of several NAD-RNAs in the opportunistic pathogen Staphylococcus aureus. Most prominently, RNAIII, a central quorum-sensing regulator of this bacterium’s physiology, was found to be 5′ NAD capped in a range from 10 to 35%. NAD incorporation efficiency into RNAIII was found to depend in vivo on the −1 position of the P3 promoter. An increase in RNAIII’s NAD content led to a decreased expression of alpha- and delta-toxins, resulting in reduced cytotoxicity of the modified strains. These effects seem to be caused neither by changes in RNAIII’s secondary structure nor by a different translatability upon NAD attachment, as indicated by unaltered patterns in in vitro chemical probing and toeprinting experiments. Even though we did not observe any effect of this modification on RNAIII’s secondary structure or translatability in vitro, additional unidentified factors might account for the modulation of exotoxins in vivo. Ultimately, the study constitutes a step forward in the discovery of new roles of the NAD molecule in bacteria. IMPORTANCE Numerous organisms, including bacteria, are endowed with a 5′ NAD cap in specific RNAs. While the presence of the 5′ NAD cap modulates the stability of the modified RNA species, a significant biological function and phenotype have not been assigned so far. Here, we show the presence of a 5′ NAD cap in RNAIII from S. aureus, a dual-function regulatory RNA involved in quorum-sensing processes and regulation of virulence factor expression. We also demonstrate that altering the natural NAD modification ratio of RNAIII leads to a decrease in exotoxin production, thereby modulating the bacterium’s virulence. Our work unveils a new layer of regulation of RNAIII and the agr system that might be linked to the redox state of the NAD molecule in the cell.


2003 ◽  
Vol 71 (5) ◽  
pp. 2892-2896 ◽  
Author(s):  
Anette Hübner ◽  
Andrew T. Revel ◽  
Dena M. Nolen ◽  
Kayla E. Hagman ◽  
Michael V. Norgard

ABSTRACT The luxS gene product is an integral component of LuxS/autoinducer-2 (AI-2) quorum-sensing systems in bacteria. A putative luxS gene was expressed at comparable levels by Borrelia burgdorferi strain 297 cultivated either in vitro or in dialysis membrane chambers implanted in rat peritoneal cavities. Although the borrelial luxS gene functionally complemented a LuxS deficiency in Escherichia coli DH5α, AI-2-like activity could not be detected within B. burgdorferi culture supernatants or concentrated cell lysates. Finally, a luxS-deficient mutant of B. burgdorferi was infectious at wild-type levels when it was intradermally needle inoculated into mice, indicating that expression of luxS probably is not required for infectivity but, at the very least, is not essential for mammalian host adaptation. Our findings also challenge the notion that a LuxS/AI-2 quorum-sensing system is operative in B. burgdorferi.


2017 ◽  
Vol 85 (6) ◽  
Author(s):  
Qiang Yu ◽  
Dion Lepp ◽  
Iman Mehdizadeh Gohari ◽  
Tao Wu ◽  
Hongzhuan Zhou ◽  
...  

ABSTRACT Clostridium perfringens encodes at least two different quorum sensing (QS) systems, the Agr-like and LuxS, and recent studies have highlighted their importance in the regulation of toxin production and virulence. The role of QS in the pathogenesis of necrotic enteritis (NE) in poultry and the regulation of NetB, the key toxin involved, has not yet been investigated. We have generated isogenic agrB-null and complemented strains from parent strain CP1 and demonstrated that the virulence of the agrB-null mutant was strongly attenuated in a chicken NE model system and restored by complementation. The production of NetB, a key NE-associated toxin, was dramatically reduced in the agrB mutant at both the transcriptional and protein levels, though not in a luxS mutant. Transwell assays confirmed that the Agr-like QS system controls NetB production through a diffusible signal. Global gene expression analysis of the agrB mutant identified additional genes modulated by Agr-like QS, including operons related to phospholipid metabolism and adherence, which may also play a role in NE pathogenesis. This study provides the first evidence that the Agr-like QS system is critical for NE pathogenesis and identifies a number of Agr-regulated genes, most notably netB, that are potentially involved in mediating its effects. The Agr-like QS system thus may serve as a target for developing novel interventions to prevent NE in chickens.


2015 ◽  
Vol 83 (6) ◽  
pp. 2369-2381 ◽  
Author(s):  
Jianming Chen ◽  
Bruce A. McClane

Large clostridial toxins (LCTs) are produced by at least four pathogenic clostridial species, and several LCTs are proven pivotal virulence factors for both human and veterinary diseases. TpeL is a recently identified LCT produced byClostridium perfringensthat has received relatively limited study. In response, the current study surveyed carriage of thetpeLgene among differentC. perfringensstrains, detecting this toxin gene in some type A, B, and C strains but not in any type D or E strains. This study also determined that all tested strains maximally produce, and extracellularly release, TpeL at the late-log or early-stationary growth stage duringin vitroculture, which is different from the maximal late-stationary-phase production reported previously for other LCTs and for TpeL production byC. perfringensstrain JIR12688. In addition, the present study found that TpeL levels in culture supernatants can be repressed by either glucose or sucrose. It was also shown that, at natural production levels, TpeL is a significant contributor to the cytotoxic activity of supernatants from cultures oftpeL-positive strain CN3685. Lastly, this study identified TpeL, which presumably is produced in the intestines during diseases caused by TpeL-positive type B and C strains, as a toxin whose cytotoxicity decreases after treatment with trypsin; this finding may have pathophysiologic relevance by suggesting that, like beta toxin, TpeL contributes to type B and C infections in hosts with decreased trypsin levels due to disease, diet, or age.


2011 ◽  
Vol 79 (10) ◽  
pp. 4010-4018 ◽  
Author(s):  
Michael H. Norris ◽  
Katie L. Propst ◽  
Yun Kang ◽  
Steven W. Dow ◽  
Herbert P. Schweizer ◽  
...  

ABSTRACTBurkholderia pseudomallei, the cause of serious and life-threatening diseases in humans, is of national biodefense concern because of its potential use as a bioterrorism agent. This microbe is listed as a select agent by the CDC; therefore, development of vaccines is of significant importance. Here, we further investigated the growth characteristics of a recently createdB. pseudomallei1026b Δasdmutantin vitro, in a cell model, and in an animal model of infection. The mutant was typified by an inability to grow in the absence of exogenous diaminopimelate (DAP); upon single-copy complementation with a wild-type copy of theasdgene, growth was restored to wild-type levels. Further characterization of theB. pseudomalleiΔasdmutant revealed a marked decrease in RAW264.7 murine macrophage cytotoxicity compared to the wild type and the complemented Δasdmutant. RAW264.7 cells infected by the Δasdmutant did not exhibit signs of cytopathology or multinucleated giant cell (MNGC) formation, which were observed in wild-typeB. pseudomalleicell infections. The Δasdmutant was found to be avirulent in BALB/c mice, and mice vaccinated with the mutant were protected against acute inhalation melioidosis. Thus, theB. pseudomalleiΔasdmutant may be a promising live attenuated vaccine strain and a biosafe strain for consideration of exclusion from the select agent list.


2015 ◽  
Vol 83 (6) ◽  
pp. 2430-2442 ◽  
Author(s):  
Jorge E. Vidal ◽  
Joshua R. Shak ◽  
Adrian Canizalez-Roman

Clostridium perfringensstrains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by theC. perfringensAgr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. AlthoughC. perfringensstrains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrBmutant strains were not able to produce biofilms, a ΔluxSmutant produced wild-type levels. The transcript levels of CpAL-regulatedcpaandpfoAgenes, but notcpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpaand ΔpfoAmutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpbmade wild-type levels. Biofilm formation was restored in complemented Δcpa/cpaand ΔpfoA/pfoAstrains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation inC. perfringensby increasing levels of certain toxins required to build biofilms.


2021 ◽  
Author(s):  
Iman Mehdizadeh Gohari ◽  
Jihong Li ◽  
Bruce A. McClane

Clostridium perfringens toxin production is often regulated by the Agr-like quorum sensing (QS) system signaling the VirS/VirR two-component regulatory system (TCRS), which consists of the VirS membrane sensor histidine kinase and the VirR response regulator. VirS/VirR is known to directly control expression of some genes by binding to a DNA binding motif consisting of two VirR boxes located within 500 bp of the target gene start codon. Alternatively, the VirS/VirR system can indirectly regulate production levels of other proteins by increasing expression of a small regulatory RNA (VR-RNA). Previous studies demonstrated that beta toxin (CPB) production by C. perfringens type B and C strains is positively-regulated by both the Agr-like QS and VirS/VirR TCRS, but the mechanism has been unclear. The current study first inactivated the vrr gene encoding VR-RNA to show that VirS/VirR regulation of cpb expression does not involve VR-RNA. Subsequently, bioinformatic analyses identified a potential VirR binding motif, along with a predicted strong promoter, ∼1.4 kb upstream of the cpb open reading frame (ORF). Two insertion sequences were present between this VirR binding motif/promoter region and the cpb ORF. PCR screening of a collection of strains carrying cpb showed that the presence and sequence of this VirR binding motif/promoter is highly conserved among CPB-producing strains. RT-PCR and a GusA reporter assay showed this VirR binding motif is important for regulating CPB producion. These findings indicate that VirS/VirR directly regulates cpb expression via VirS binding to a VirR binding motif located unusually distant from the cpb start codon. IMPORTANCE Clostridium perfringens beta toxin (CPB) is only produced by type B and C strains. Production of CPB is essential for the pathogenesis of type C-associated infections, which include hemorrhagic necrotizing enteritis and enterotoxemia in both humans and animals. In addition, CPB can synergize with other toxins during C. perfringens gastrointestinal diseases. CPB toxin production is cooperatively regulated by the Agr-like quorum sensing (QS) system and the VirS/VirR two-component regulatory system. This study now reports that the VirS/VirR regulatory cascade directly controls expression of the cpb gene via a process involving a VirR box binding motif located unusually far (∼1.4 kb) upstream of the cpb ORF. This study provides a better understanding of the regulatory mechanisms for CPB production by the VirS/VirR regulatory cascade.


Sign in / Sign up

Export Citation Format

Share Document