scholarly journals Regulatory T Cells Are Locally Induced during Intravaginal Infection of Mice with Neisseria gonorrhoeae

2008 ◽  
Vol 76 (12) ◽  
pp. 5456-5465 ◽  
Author(s):  
Mónica Imarai ◽  
Enzo Candia ◽  
Carolina Rodriguez-Tirado ◽  
Javier Tognarelli ◽  
Mirka Pardo ◽  
...  

ABSTRACT Neisseria gonorrhoeae is a gram-negative diplococcus that in human beings produces gonorrhea. Much clinical evidence has led to the conclusion that gonococcus has important mechanisms to evade host immune functions; however, these mechanisms are only now beginning to be elucidated. In this study, we determined that the BALB/c mouse is a good animal model to study gonococcus infection and examined the immune response against the bacteria. We determined that after intravaginal inoculation of mice with Neisseria gonorrhoeae, the bacteria reached and invaded the upper female reproductive tissues and elicited a T-cell-specific immune response associated with a very weak humoral response, altogether resembling gonococcus infection and disease in women. Remarkably, in the draining lymph nodes of the genital tracts of infected mice, we found an increase of regulatory T lymphocytes, namely, transforming growth factor β1-positive CD4+ T cells and CD4+ CD25+ Foxp3+ T cells. Altogether, results indicate that N. gonorrhoeae induces regulatory T cells, which might be related to the local survival of the pathogen and the establishment of a chronic asymptomatic infection.

Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4594-4601 ◽  
Author(s):  
Mizuko Mamura ◽  
WoonKyu Lee ◽  
Timothy J. Sullivan ◽  
Angelina Felici ◽  
Anastasia L. Sowers ◽  
...  

Abstract Tgf-β1-/- mice develop a progressive, lethal, inflammatory syndrome, but mechanisms leading to the spontaneous activation of Tgf-β1-/- T cells remain unclear. Here we show the disruption of CD28 gene expression accelerates disease in Tgf-β1-/- mice, and we link this increase in severity to a reduction in the number of CD4+CD25+ regulatory T cells. CD4+CD25+ T cells develop normally in Tgf-β1-/- mice and display characteristic expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), glucocorticoid-induced tumor necrosis factor receptor (GITR), αEβ7 integrin, and Foxp3. Adoptive transfer of Tgf-β1-/- splenocytes to Tgf-β1+/+/Rag2-/- mice induced an autoimmune inflammatory disease with features similar to those of the Tgf-β1-/- phenotype, and disease transfer was accelerated by the depletion of Tgf-β1-/- CD4+CD25+ T cells from donor splenocytes. Cotransfer of Tgf- β1-/- CD4+CD25+ T cells clearly attenuated disease in Rag2-/- recipients of CD25+-depleted Tgf-β1-/- spleen and lymph node cells, but suppression was incomplete when compared with Tgf-β1+/+ CD4+CD25+ T cells. These data demonstrate that CD4+CD25+ regulatory T cells develop in complete absence of endogenous transforming growth factor-β1 (TGF-β1) expression and that autocrine TGF-β1 expression is not essential for these cells to suppress inflammation in vivo. (Blood. 2004;103:4594-4601)


2010 ◽  
Vol 88 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Ting-Yu Wang ◽  
Jun Li ◽  
Chang-Yu Li ◽  
Yong Jin ◽  
Xiong-Wen Lü ◽  
...  

This study was to investigate the effect of leflunomide on the immunosuppressive CD4+CD25+ regulatory T cells (CD4+CD25+ Tregs) in collagen-induced arthritis (CIA) rats. CIA was induced by collagen type II in Wistar rats. Immunofluorescence flow cytometry and RT-PCR were used to determine the proportion of CD4+CD25+ Tregs and the expression of Foxp3 mRNA, respectively. Proliferation of T lymphocytes was assayed with MTT reagent, and the level of transforming growth factor β1 (TGF-β1) in the supernatant of concanavalin A (Con A)-induced T lymphocytes was determined by ELISA kit. Our investigations demonstrated that inhibition of arthritis by leflunomide was related to changes in CD4+CD25+ Tregs. In addition, A771726, which is the active metabolite of leflunomide, promoted the differentiation of spleen lymphocytes into CD4+CD25+ Tregs, increased antiinflammatory cytokine TGF-β1 secretion, and adjusted the activity of Con A-induced lymphocytes in vitro.


Science ◽  
2018 ◽  
Vol 362 (6417) ◽  
pp. 952-956 ◽  
Author(s):  
Stéphanie Liénart ◽  
Romain Merceron ◽  
Christophe Vanderaa ◽  
Fanny Lambert ◽  
Didier Colau ◽  
...  

Transforming growth factor–β1 (TGF-β1) is one of very few cytokines produced in a latent form, requiring activation to exert any of its vastly diverse effects on development, immunity, and cancer. Regulatory T cells (Tregs) suppress immune cells within close proximity by activating latent TGF-β1 presented by GARP (glycoprotein A repetitions predominant) to integrin αVβ8 on their surface. We solved the crystal structure of GARP:latent TGF-β1 bound to an antibody that stabilizes the complex and blocks release of active TGF-β1. This finding reveals how GARP exploits an unusual medley of interactions, including fold complementation by the amino terminus of TGF-β1, to chaperone and orient the cytokine for binding and activation by αVβ8. Thus, this work further elucidates the mechanism of antibody-mediated blockade of TGF-β1 activation and immunosuppression by Tregs.


Sign in / Sign up

Export Citation Format

Share Document