scholarly journals Helicobacter pylori Promotes the Production of Thymic Stromal Lymphopoietin by Gastric Epithelial Cells and Induces Dendritic Cell-Mediated Inflammatory Th2 Responses

2009 ◽  
Vol 78 (1) ◽  
pp. 108-114 ◽  
Author(s):  
Masahiro Kido ◽  
Junya Tanaka ◽  
Nobuhiro Aoki ◽  
Satoru Iwamoto ◽  
Hisayo Nishiura ◽  
...  

ABSTRACT Helicobacter pylori colonizes the stomach and induces strong, specific local and systemic humoral and cell-mediated immunity, resulting in the development of chronic gastritis in humans. Although H. pylori-induced chronic atrophic gastritis is characterized by marked infiltration of T helper type 1 (Th1) cytokine-producing CD4+ T cells, almost all of the inflamed gastric mucosae also contain focal lymphoid aggregates with germinal centers. In addition, typical H. pylori-induced chronic gastritis in children, called follicular gastritis, is characterized by B-cell follicle formation in the gastric mucosa. The aim of this study was to examine whether thymic stromal lymphopoietin (TSLP), an epithelial-cell-derived cytokine inducing a dendritic cell (DC)-mediated inflammatory Th2 response, is involved in Th2 responses triggering B-cell activation in H. pylori-induced gastritis. Here, we show that H. pylori triggered human gastric epithelial cells to produce TSLP, together with the DC-attracting chemokine MIP-3α and the B-cell-activating factor BAFF. After DCs were incubated with supernatants from H. pylori-infected epithelial cells, the conditioned cells expressed high levels of costimulatory molecules, such as CD80, and triggered naïve CD4+ T cells to produce high levels of the Th2 cytokines interleukin-4 and interleukin-13 and of the inflammatory cytokines tumor necrosis factor alpha and gamma interferon. In contrast, after incubation of the supernatants with the neutralizing antibodies to TSLP, the conditioned DCs did not prime T cells to produce high levels of Th2 cytokines. These results, together with the finding that TSLP was expressed by the epithelial cells of human follicular gastritis, suggest that H. pylori can directly trigger epithelial cells to produce TSLP. It also suggests that TSLP-mediated DC activation may be involved in Th2 responses triggering B-cell activation in H. pylori-induced gastritis.

Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2901-2908 ◽  
Author(s):  
Asimah Rafi ◽  
Mitzi Nagarkatti ◽  
Prakash S. Nagarkatti

Abstract CD44 is a widely distributed cell surface glycoprotein whose principal ligand has been identified as hyaluronic acid (HA), a major component of the extracellular matrix (ECM). Recent studies have demonstrated that activation through CD44 leads to induction of effector function in T cells and macrophages. In the current study, we investigated whether HA or monoclonal antibodies (MoAbs) against CD44 would induce a proliferative response in mouse lymphocytes. Spleen cells from normal and nude, but not severe combined immunodeficient mice, exhibited strong proliferative responsiveness to stimulation with soluble HA or anti-CD44 MoAbs. Furthermore, purified B cells, but not T cells, were found to respond to HA. HA was unable to stimulate T cells even in the presence of antigen presenting cells (APC) and was unable to act as a costimulus in the presence of mitogenic or submitogenic concentrations of anti-CD3 MoAbs. In contrast, stimulation of B cells with HA in vitro, led to B-cell differentiation as measured by production of IgM antibodies in addition to increased expression of CD44 and decreased levels of CD45R. The fact that the B cells were responding directly to HA through its binding to CD44 and not to any contaminants or endotoxins was demonstrated by the fact that F(ab)2 fragments of anti-CD44 MoAbs or soluble CD44 fusion proteins could significantly inhibit the HA-induced proliferation of B cells. Also, HA-induced proliferation of B cells was not affected by the addition of polymixin B, and B cells from lipopolysaccharide (LPS)-unresponsive C3H/HeJ strain responded strongly to stimulation with HA. Furthermore, HA, but not chondroitin-sulfate, another major component of the ECM, induced B-cell activation. It was also noted that injection of HA intraperitoneally, triggered splenic B cell proliferation in vivo. Together, the current study demonstrates that interaction between HA and CD44 can regulate murine B-cell effector functions and that such interactions may play a critical role during normal or autoimmune responsiveness of B cells.


2002 ◽  
Vol 168 (8) ◽  
pp. 4164-4172 ◽  
Author(s):  
Huang-Ge Zhang ◽  
PingAr Yang ◽  
Jinfu Xie ◽  
Zhongyu Liu ◽  
Di Liu ◽  
...  

2012 ◽  
Vol 3 ◽  
Author(s):  
Stéphane Chevrier ◽  
Céline Genton ◽  
Bernard Malissen ◽  
Marie Malissen ◽  
Hans Acha-Orbea

2003 ◽  
Vol 197 (2) ◽  
pp. 195-206 ◽  
Author(s):  
Simon Fillatreau ◽  
David Gray

We investigated the mechanism of CD4 T cell accumulation in B cell follicles after immunization. Follicular T cell numbers were correlated with the number of B cells, indicating B cell control of the niche that T cells occupy. Despite this, we found no role for B cells in the follicular migration of T cells. Instead, T cells are induced to migrate into B cell follicles entirely as a result of interaction with dendritic cells (DCs). Migration relies on CD40-dependent maturation of DCs, as it did not occur in CD40-deficient mice but was reconstituted with CD40+ DCs. Restoration was not achieved by the activation of DCs with bacterial activators (e.g., lipopolysaccharide, CpG), but was by the injection of OX40L–huIgG1 fusion protein. Crucially, the up-regulation of OX40L (on antigen-presenting cells) and CXCR-5 (on T cells) are CD40-dependent events and we show that T cells do not migrate to follicles in immunized OX40-deficient mice.


1999 ◽  
Vol 11 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Gerry G. B. Klaus ◽  
Mary Holman ◽  
Caroline Johnson-Léger ◽  
Jillian R. Christenson ◽  
Marilyn R. Kehry

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1273-1273
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Suzanne T. Ildstad

Abstract Introduction: Recipient sensitization is one of the most critical problems facing clinical transplantation. Allosensitized recipients often rapidly reject vascularized solid organ grafts as a result of preformed anti-donor antibody. Similarly, bone marrow transplantation for sickle cell disease and thalassemia is limited by sensitization from transfusion. A method to prevent sensitization would have a significant impact on transplant outcomes. Until recently, T cells were believed to be the primary effector cell in the induction of adaptive immune responses. We recently found that humoral immunity provides a dominant barrier in allosensitization to MHC antigens. B cell activation occurs through T-cell-dependent responses via signaling from the co-stimulatory molecule CD154 (on T cells) to its ligand CD40 (on B cells). Here, we examined whether blocking the costimulatory interaction between T and B cells during exposure to alloantigen would prevent allosensitization. Materials and Methods: Mice deficient for CD154 molecule (CD154−/ −, H-2b), α β-TCR+ T cells (TCRβ −/ −, H-2b); or wild type B6 (H-2b) mice received allogeneic BALB/c (H-2d) skin grafts (SG) on day 0. Some B6 mice were also treated with anti-CD154 (day0 and day+3) and/or anti-α β-TCR mAb (day-3) peritransplant. Antibodies were detected by flow cytometry cross-match (FCM) assay and reported as mean fluorescence intensity (MFI). Results: CD154−/ − mice rejected primary BALB/c SG with a time course similar to normal B6 controls (12.4 ± 2.1 vs. 12.7 ± 2.4 days). TCRβ −/ − mice accepted SG permanently (>120 days). Notably, anti-donor antibody was not generated in either the CD154−/ − or TCRβ −/ − mice (MFI: 4.1 ± 0.1 and 4.2 ± 0.4) after SG compared with Ab in naïve serum (3.0±0.2). Sensitized B6 mice had significantly higher antibody titers (106.8 ± 35.1) 4 weeks after SG rejection. A second SG transplanted 5 to 7 weeks after the first graft was rejected at an accelerated rate (9.0 ± 0.8 days, P < 0.05) in the CD154−/ − mice, but no anti-donor MHC antibody was produced. Second grafts placed on TCRβ −/ − mice were accepted, as were the primary SG. In normal B6 recipients pretreated with anti-CD154 or anti-α β-TCR alone, SG survival was not significantly prolonged. The Ab titers were only slightly higher in mice treated with anti-CD154 (5.9±3.4; P>0.05) than in naïve mice, and significantly higher in mice treated with mAb anti-α β-TCR (45.1±25.6; P=0.03). The combined treatment with both mAbs resulted in complete abrogation of Ab production (4.2±0.9) and 70% of skin grafts survived >100 days. Germinal center formation, reflective of B cell activation, was completely disrupted in mice treated with anti-CD154 alone or combined with anti-α β-TCR. Conclusion: These results suggest that the CD40/CD154 co-stimulatory pathway is critically important in B cell activation to generate alloantibody. Notably, blocking molecular interactions between CD40/CD154 abrogated the generation of antibody and blocked germinal center formation, inducing B cell tolerance. The additional removal of recipient T cells in the context of co-stimulatory blockade resulted in the induction of T as well as B cell tolerance. These findings are the first demonstration that sensitization can be prevented through blockade of co-stimulatory interactions in the generation of adaptive immune responses and could have a significant impact on management of sensitized recipients in the clinic.


2001 ◽  
Vol 120 (5) ◽  
pp. A135
Author(s):  
Seiji M. Futagami ◽  
Tetsuro M. Hiratsuka ◽  
Atsushi M. Tatsuguchi ◽  
Ken M. Wada ◽  
Tomonori M. Akamatsu ◽  
...  

1984 ◽  
Vol 159 (3) ◽  
pp. 881-905 ◽  
Author(s):  
J D Ashwell ◽  
A L DeFranco ◽  
W E Paul ◽  
R H Schwartz

In this report we have examined the ability of small resting B cells to act as antigen-presenting cells (APC) to antigen-specific MHC-restricted T cells as assessed by either T cell proliferation or T cell-dependent B cell stimulation. We found that 10 of 14 in vitro antigen-specific MHC-restricted T cell clones and lines and three of four T cell hybridomas could be induced to either proliferate or secrete IL-2 in the presence of lightly irradiated (1,000 rads) purified B cells and the appropriate foreign antigen. All T cell lines and hybridomas were stimulated to proliferate or make IL-2 by macrophage- and dendritic cell-enriched populations and all T cells tested except one hybridoma caused B cell activation when stimulated with B cells as APC. Furthermore, lightly irradiated, highly purified syngeneic B cells were as potent a source of APC for inducing B cell activation as were low density dendritic and macrophage-enriched cells. Lymph node T cells freshly taken from antigen-primed animals were also found to proliferate when cultured with purified B cells and the appropriate antigen. Thus, small resting B cells can function as APC to a variety of T cells. This APC function was easily measured when the cells were irradiated with 1,000 rads, but was greatly diminished or absent when they were irradiated with 3,300 rads. Thus, the failure of some other laboratories to observe this phenomenon may be the result of the relative radiosensitivity of the antigen-presenting function of the B cells. In addition, this radiosensitivity allowed us to easily distinguish B cell antigen presentation from presentation by the dendritic cell and macrophage, as the latter was resistant to 3,300 rads. Finally, one T cell clone that failed to proliferate when B cells were used as APC was able to recruit allogeneic B cells to proliferate in the presence of syngeneic B cells and the appropriate antigen. This result suggests that there are at least two distinct pathways of activation in T cells, one that leads to T cell proliferation and one that leads to the secretion of B cell recruitment factor(s).


2021 ◽  
Vol 118 (43) ◽  
pp. e2108957118
Author(s):  
Wen Lu ◽  
Katarzyna M. Skrzypczynska ◽  
Arthur Weiss

T cell antigen receptor (TCR) and B cell antigen receptor (BCR) signaling are initiated and tightly regulated by Src-family kinases (SFKs). SFKs positively regulate TCR signaling in naïve T cells but have both positive and negative regulatory roles in BCR signaling in naïve B cells. The proper regulation of their activities depends on the opposing actions of receptor tyrosine phosphatases CD45 and CD148 and the cytoplasmic tyrosine kinase C-terminal Src kinase Csk. Csk is a major negative regulator of SFKs. Using a PP1-analog-sensitive Csk (CskAS) system, we have previously shown that inhibition of CskAS increases SFK activity, leading to augmentation of responses to weak TCR stimuli in T cells. However, the effects of Csk inhibition in B cells were not known. In this study, we surprisingly found that inhibition of CskAS led to marked inhibition of BCR-stimulated cytoplasmic free calcium increase and Erk activation despite increased SFK activation in B cells, contrasting the effects observed in T cells. Further investigation revealed that acute CskAS inhibition suppressed BCR-mediated phosphatidylinositol 3,4,5-trisphosphate (PIP3) production in B cells. Restoring PIP3 levels in B cells by CD19 cross-linking or SHIP1 deficiency eliminated the negative regulatory effect of CskAS inhibition. This reveals the critical role of Csk in maintaining an appropriate level of SFK activity and regulating PIP3 amounts as a means of compensating for SFK fluctuations to prevent inappropriate B cell activation. This regulatory mechanism controlling PIP3 amounts may also contribute to B cell anergy and self-tolerance.


Sign in / Sign up

Export Citation Format

Share Document