scholarly journals Characterization of a Novel Iron Acquisition Activity That Coordinates the Iron Response with Population Density under Iron-Replete Conditions in Bacillus subtilis

2016 ◽  
Vol 199 (1) ◽  
Author(s):  
Emily M. Roy ◽  
Kevin L. Griffith

ABSTRACT Iron is an essential micronutrient required for the viability of many organisms. Under oxidizing conditions, ferric iron is highly insoluble (∼10−9 to 10−18 M), yet bacteria typically require ∼10−6 M for survival. To overcome this disparity, many bacteria have adopted the use of extracellular iron-chelating siderophores coupled with specific iron-siderophore uptake systems. In the case of Bacillus subtilis, undomesticated strains produce the siderophore bacillibactin. However, many laboratory strains, e.g., JH642, have lost the ability to produce bacillibactin during the process of domestication. In this work, we identified a novel iron acquisition activity from strain JH642 that accumulates in the growth medium and coordinates the iron response with population density. The molecule(s) responsible for this activity was named elemental Fe(II/III) (Efe) acquisition factor because efeUOB (ywbLMN) is required for its activity. Unlike most iron uptake molecules, including siderophores and iron reductases, Efe acquisition factor is present under iron-replete conditions and is regulated independently of Fur repressor. Restoring bacillibactin production in strain JH642 inhibits the activity of Efe acquisition factor, presumably by sequestering available iron. A similar iron acquisition activity is produced from a mutant of Escherichia coli unable to synthesize the siderophore enterobactin. Given the conservation of efeUOB and its regulation by catecholic siderophores in B. subtilis and E. coli, we speculate that Efe acquisition factor is utilized by many bacteria, serves as an alternative to Fur-mediated iron acquisition systems, and provides cells with biologically available iron that would normally be inaccessible during aerobic growth under iron-replete conditions. IMPORTANCE Iron is an essential micronutrient required for a variety of biological processes, yet ferric iron is highly insoluble during aerobic growth. In this work, we identified a novel iron acquisition activity that coordinates the iron response with population density in laboratory strains of Bacillus subtilis. We named the molecule(s) responsible for this activity elemental Fe(II/III) (Efe) acquisition factor after the efeUOB (ywbLMN) operon required for its uptake into cells. Unlike most iron uptake systems, Efe acquisition factor is present under iron-replete conditions and is regulated independently of Fur, the master regulator of the iron response. We speculate that Efe acquisition factor is highly conserved among bacteria and serves as a backup to Fur-mediated iron acquisition systems.

2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Charles T. Lauhon

ABSTRACT In bacteria, tRNAs that decode 4-fold degenerate family codons and have uridine at position 34 of the anticodon are typically modified with either 5-methoxyuridine (mo5U) or 5-methoxycarbonylmethoxyuridine (mcmo5U). These modifications are critical for extended recognition of some codons at the wobble position. Whereas the alkylation steps of these modifications have been described, genes required for the hydroxylation of U34 to give 5-hydroxyuridine (ho5U) remain unknown. Here, a number of genes in Escherichia coli and Bacillus subtilis are identified that are required for wild-type (wt) levels of ho5U. The yrrMNO operon is identified in B. subtilis as important for the biosynthesis of ho5U. Both yrrN and yrrO are homologs to peptidase U32 family genes, which includes the rlhA gene required for ho5C synthesis in E. coli. Deletion of either yrrN or yrrO, or both, gives a 50% reduction in mo5U tRNA levels. In E. coli, yegQ was found to be the only one of four peptidase U32 genes involved in ho5U synthesis. Interestingly, this mutant shows the same 50% reduction in (m)cmo5U as that observed for mo5U in the B. subtilis mutants. By analyzing the genomic context of yegQ homologs, the ferredoxin YfhL is shown to be required for ho5U synthesis in E. coli to the same extent as yegQ. Additional genes required for Fe-S biosynthesis and biosynthesis of prephenate give the same 50% reduction in modification. Together, these data suggest that ho5U biosynthesis in bacteria is similar to that of ho5C, but additional genes and substrates are required for complete modification. IMPORTANCE Modified nucleotides in tRNA serve to optimize both its structure and function for accurate translation of the genetic code. The biosynthesis of these modifications has been fertile ground for uncovering unique biochemistry and metabolism in cells. In this work, genes that are required for a novel anaerobic hydroxylation of uridine at the wobble position of some tRNAs are identified in both Bacillus subtilis and Escherichia coli. These genes code for Fe-S cluster proteins, and their deletion reduces the levels of the hydroxyuridine by 50% in both organisms. Additional genes required for Fe-S cluster and prephenate biosynthesis and a previously described ferredoxin gene all display a similar reduction in hydroxyuridine levels, suggesting that still other genes are required for the modification.


2013 ◽  
Vol 81 (11) ◽  
pp. 4182-4191 ◽  
Author(s):  
Huaixin Zheng ◽  
Christa H. Chatfield ◽  
Mark R. Liles ◽  
Nicholas P. Cianciotto

ABSTRACTIron acquisition is critical to the growth and virulence ofLegionella pneumophila. Previously, we found thatL. pneumophilauses both a ferrisiderophore pathway and ferrous iron transport to obtain iron. We now report that two molecules secreted byL. pneumophila, homogentisic acid (HGA) and its polymerized variant (HGA-melanin, a pyomelanin), are able to directly mediate the reduction of various ferric iron salts. Furthermore, HGA, synthetic HGA-melanin, and HGA-melanin derived from bacterial supernatants enhanced the ability ofL. pneumophilaand other species ofLegionellato take up radiolabeled iron. Enhanced iron uptake was not observed with a ferrous iron transport mutant. Thus, HGA and HGA-melanin mediate ferric iron reduction, with the resulting ferrous iron being available to the bacterium for uptake. Upon further testing ofL. pneumophilaculture supernatants, we found that significant amounts of ferric and ferrous iron were associated with secreted HGA-melanin. Importantly, a pyomelanin-containing fraction obtained from a wild-type culture supernatant was able to stimulate the growth of iron-starved legionellae. That the corresponding supernatant fraction obtained from a nonpigmented mutant culture did not stimulate growth demonstrated that HGA-melanin is able to both promote iron uptake and enhance growth under iron-limiting conditions. Indicative of a complementary role in iron acquisition, HGA-melanin levels were inversely related to the levels of siderophore activity. Compatible with a role in the ecology and pathogenesis ofL. pneumophila, HGA and HGA-melanin were effective at reducing and releasing iron from both insoluble ferric hydroxide and the mammalian iron chelates ferritin and transferrin.


2017 ◽  
Vol 83 (10) ◽  
Author(s):  
Gabrielle M. Grandchamp ◽  
Lews Caro ◽  
Elizabeth A. Shank

ABSTRACT In microbial communities, bacteria chemically and physically interact with one another. Some of these interactions are mediated by secreted specialized metabolites that act as either intraspecies or interspecies signals to alter gene expression and to change cell physiology. Bacillus subtilis is a well-characterized soil microbe that can differentiate into multiple cell types, including metabolically dormant endospores. We were interested in identifying microbial interactions that affected sporulation in B. subtilis. Using a fluorescent transcriptional reporter, we observed that coculturing B. subtilis with Escherichia coli promoted sporulation gene expression via a secreted metabolite. To identify the active compound, we screened the E. coli Keio Collection and identified the sporulation-accelerating cue as the siderophore enterobactin. B. subtilis has multiple iron acquisition systems that are used to take up the B. subtilis-produced siderophore bacillibactin, as well as to pirate exogenous siderophores such as enterobactin. While B. subtilis uses a single substrate binding protein (FeuA) to take up both bacillibactin and enterobactin, we discovered that it requires two distinct genes to sporulate in response to these siderophores (the esterase gene besA for bacillibactin and a putative esterase gene, ybbA, for enterobactin). In addition, we found that siderophores from a variety of other microbial species also promote sporulation in B. subtilis. Our results thus demonstrate that siderophores can act not only as bacterial iron acquisition systems but also as interspecies cues that alter cellular development and accelerate sporulation in B. subtilis. IMPORTANCE While much is known about the genetic regulation of Bacillus subtilis sporulation, little is understood about how other bacteria influence this process. This work describes an interaction between Escherichia coli and B. subtilis that accelerates sporulation in B. subtilis. The interaction is mediated by the E. coli siderophore enterobactin; we show that other species' siderophores also promote sporulation gene expression in B. subtilis. These results suggest that siderophores not only may supply bacteria with the mineral nutrient iron but also may play a role in bacterial interspecies signaling, providing a cue for sporulation. Siderophores are produced by many bacterial species and thus potentially play important roles in altering bacterial cell physiology in diverse environments.


2008 ◽  
Vol 51 (3) ◽  
pp. 473-482 ◽  
Author(s):  
Dorismey Vieira Tokano ◽  
Marisa Emiko Kawaichi ◽  
Emerson José Venâncio ◽  
Marilda Carlos Vidotto

The aim of this work was to isolate, clone and characterize the iron uptake gene iutA from avian pathogenic E. coli (APEC). The iutA gene was isolated from the strain APEC 9, serotype O2:H9, which was cloned in the expression vector pET101/D-TOPO. The gene of 2.2 Kb was sequenced (AY602767, which showed high similarity to the iutA gene from three plasmids, two from APEC, pAPEC-02-ColV (AY545598.4) and pTJ100 (AY553855.1), and one from a human invasive E. coli strain, the pColV K30. The recombinant protein IutA was over expressed in E. coli BL21(DE-3) and was solubilized with urea and purified by Ni-NTA column. This method produced a relatively high yield of r-IutA of approximately 74kDa, which was used to produce the antibody anti-IutA. This anti-IutA reacted with the protein r-IutA and native IutA of APEC 9, as demonstrated by Western blot, showing that the r-IutA conserved epitopes and its antigenicity was preserved. The anti-IutA IgY was able to inhibit the IutA biological activity, inhibiting the sensitivity to cloacin DF13 of APEC9. However, it did not inhibit the growth of APEC9 in M9 and did not protect the chickens inoculated with the APEC, suggesting that the APEC possessed another iron acquisition mechanism distinct of aerobactin.


2001 ◽  
Vol 183 (9) ◽  
pp. 2779-2784 ◽  
Author(s):  
Hirokazu Katoh ◽  
Natsu Hagino ◽  
Arthur R. Grossman ◽  
Teruo Ogawa

ABSTRACT Genes encoding polypeptides of an ATP binding cassette (ABC)-type ferric iron transporter that plays a major role in iron acquisition inSynechocystis sp. strain PCC 6803 were identified. These genes are slr1295, slr0513, slr0327, and recently reportedsll1878 (Katoh et al., J. Bacteriol. 182:6523–6524, 2000) and were designated futA1, futA2, futB, andfutC, respectively, for their involvement in ferric iron uptake. Inactivation of these genes individually or futA1and futA2 together greatly reduced the activity of ferric iron uptake in cells grown in complete medium or iron-deprived medium. All the fut genes are expressed in cells grown in complete medium, and expression was enhanced by iron starvation. ThefutA1 and futA2 genes appear to encode periplasmic proteins that play a redundant role in iron binding. The deduced products of futB and futC genes contain nucleotide-binding motifs and belong to the ABC transporter family of inner-membrane-bound and membrane-associated proteins, respectively. These results and sequence similarities among the four genes suggest that the Fut system is related to the Sfu/Fbp family of iron transporters. Inactivation of slr1392, a homologue offeoB in Escherichia coli, greatly reduced the activity of ferrous iron transport. This system is induced by intracellular low iron concentrations that are achieved in cells exposed to iron-free medium or in the fut-less mutants grown in complete medium.


2018 ◽  
Vol 201 (8) ◽  
Author(s):  
Elizabeth Ward ◽  
Eun A Kim ◽  
Joseph Panushka ◽  
Tayson Botelho ◽  
Trevor Meyer ◽  
...  

ABSTRACTWhile the protein complex responsible for controlling the direction (clockwise [CW] or counterclockwise [CCW]) of flagellar rotation has been fairly well studied inEscherichia coliandSalmonella, less is known about the switch complex inBacillus subtilisor other Gram-positive species. Two component proteins (FliG and FliM) are shared betweenE. coliandB. subtilis, but in place of the protein FliN found inE. coli, theB. subtiliscomplex contains the larger protein FliY. Notably, inB. subtilisthe signaling protein CheY-phosphate induces a switch from CW to CCW rotation, opposite to its action inE. coli. Here, we have examined the architecture and function of the switch complex inB. subtilisusing targeted cross-linking, bacterial two-hybrid protein interaction experiments, and characterization of mutant phenotypes. In major respects, theB. subtilisswitch complex appears to be organized similarly to that inE. coli. The complex is organized around a ring built from the large middle domain of FliM; this ring supports an array of FliG subunits organized in a similar way to that ofE. coli, with the FliG C-terminal domain functioning in the generation of torque via conserved charged residues. Key differences fromE. coliinvolve the middle domain of FliY, which forms an additional, more outboard array, and the C-terminal domains of FliM and FliY, which are organized into both FliY homodimers and FliM heterodimers. Together, the results suggest that the CW and CCW conformational states are similar in the Gram-negative and Gram-positive switches but that CheY-phosphate drives oppositely directed movements in the two cases.IMPORTANCEFlagellar motility plays key roles in the survival of many bacteria and in the harmful action of many pathogens. Bacterial flagella rotate; the direction of flagellar rotation is controlled by a multisubunit protein complex termed the switch complex. This complex has been extensively studied in Gram-negative model species, but little is known about the complex inBacillus subtilisor other Gram-positive species. Notably, the switch complex in Gram-positive species responds to its effector CheY-phosphate (CheY-P) by switching to CCW rotation, whereas inE. coliorSalmonellaCheY-P acts in the opposite way, promoting CW rotation. In the work here, the architecture of theB. subtilisswitch complex has been probed using cross-linking, protein interaction measurements, and mutational approaches. The results cast light on the organization of the complex and provide a framework for understanding the mechanism of flagellar direction control inB. subtilisand other Gram-positive species.


1993 ◽  
Vol 13 (7) ◽  
pp. 4342-4350
Author(s):  
D G Roman ◽  
A Dancis ◽  
G J Anderson ◽  
R D Klausner

We have identified a cell surface ferric reductase activity in the fission yeast Schizosaccharomyces pombe. A mutant strain deficient in this activity was also deficient in ferric iron uptake, while ferrous iron uptake was not impaired. Therefore, reduction is a required step in cellular ferric iron acquisition. We have cloned frp1+, the wild-type allele of the mutant gene. frp1+ mRNA levels were repressed by iron addition to the growth medium. Fusion of 138 nucleotides of frp1+ promoter sequences to a reporter gene, the bacterial chloramphenicol acetyltransferase gene, conferred iron-dependent regulation upon the latter when introduced into S. pombe. The predicted amino acid sequence of the frp1+ gene exhibits hydrophobic regions compatible with transmembrane domains. It shows similarity to the Saccharomyces cerevisiae FRE1 gene product and the gp91-phox protein, a component of the human NADPH phagocyte oxidoreductase that is deficient in X-linked chronic granulomatous disease.


2012 ◽  
Vol 78 (19) ◽  
pp. 6799-6803 ◽  
Author(s):  
Sam Abraham ◽  
David M. Gordon ◽  
James Chin ◽  
Huub J. M. Brouwers ◽  
Peter Njuguna ◽  
...  

ABSTRACTThe role ofEscherichia colias a pathogen has been the focus of considerable study, while much less is known about it as a commensal and how it adapts to and colonizes different environmental niches within the mammalian gut. In this study, we characterizeEscherichia coliorganisms (n= 146) isolated from different regions of the intestinal tracts of eight pigs (dueodenum, ileum, colon, and feces). The isolates were typed using the method of random amplified polymorphic DNA (RAPD) and screened for the presence of bacteriocin genes and plasmid replicon types. Molecular analysis of variance using the RAPD data showed thatE. coliisolates are nonrandomly distributed among different gut regions, and that gut region accounted for 25% (P< 0.001) of the observed variation among strains. Bacteriocin screening revealed that a bacteriocin gene was detected in 45% of the isolates, with 43% carrying colicin genes and 3% carrying microcin genes. Of the bacteriocins observed (H47, E3, E1, E2, E7, Ia/Ib, and B/M), the frequency with which they were detected varied with respect to gut region for the colicins E2, E7, Ia/Ib, and B/M. The plasmid replicon typing gave rise to 25 profiles from the 13 Inc types detected. Inc F types were detected most frequently, followed by Inc HI1 and N types. Of the Inc types detected, 7 were nonrandomly distributed among isolates from the different regions of the gut. The results of this study indicate that not only may the different regions of the gastrointestinal tract harbor different strains ofE. colibut also that strains from different regions have different characteristics.


2018 ◽  
Vol 84 (20) ◽  
Author(s):  
Lulu Liu ◽  
Shisheng Li ◽  
Sijing Wang ◽  
Ziyang Dong ◽  
Haichun Gao

ABSTRACT Shewanella oneidensis is an extensively studied bacterium capable of respiring minerals, including a variety of iron ores, as terminal electron acceptors (EAs). Although iron plays an essential and special role in iron respiration of S. oneidensis, little has been done to date to investigate the characteristics of iron transport in this bacterium. In this study, we found that all proteins encoded by the pub-putA-putB cluster for putrebactin (S. oneidensis native siderophore) synthesis (PubABC), recognition-transport of Fe3+-putrebactin across the outer membrane (PutA), and reduction of ferric putrebactin (PutB) are essential to putrebactin-mediated iron uptake. Although homologs of PutA are many, none can function as its replacement, but some are able to work with other bacterial siderophores. We then showed that Fe2+-specific Feo is the other primary iron uptake system, based on the synthetical lethal phenotype resulting from the loss of both iron uptake routes. The role of the Feo system in iron uptake appears to be more critical, as growth is significantly impaired by the absence of the system but not of putrebactin. Furthermore, we demonstrate that hydroxyl acids, especially α-types such as lactate, promote iron uptake in a Feo-dependent manner. Overall, our findings underscore the importance of the ferrous iron uptake system in metal-reducing bacteria, providing an insight into iron homeostasis by linking these two biological processes. IMPORTANCE S. oneidensis is among the first- and the best-studied metal-reducing bacteria, with great potential in bioremediation and biotechnology. However, many questions regarding mechanisms closely associated with those applications, such as iron homeostasis, including iron uptake, export, and regulation, remain to be addressed. Here we show that Feo is a primary player in iron uptake in addition to the siderophore-dependent route. The investigation also resolved a few puzzles regarding the unexpected phenotypes of the putA mutant and lactate-dependent iron uptake. By elucidating the physiological roles of these two important iron uptake systems, this work revealed the breadth of the impacts of iron uptake systems on the biological processes.


Microbiology ◽  
2021 ◽  
Vol 167 (9) ◽  
Author(s):  
Nirbhay Singh ◽  
Anu Chauhan ◽  
Ram Kumar ◽  
Sudheer Kumar Singh

Branched-chain amino acids (BCAAs) are essential amino acids, but their biosynthetic pathway is absent in mammals. Ketol-acid reductoisomerase (IlvC) is a BCAA biosynthetic enzyme that is coded by Rv3001c in Mycobacterium tuberculosis H37Rv (Mtb-Rv) and MRA_3031 in M. tuberculosis H37Ra (Mtb-Ra). IlvCs are essential in Mtb-Rv as well as in Escherichia coli . Compared to wild-type and IlvC-complemented Mtb-Ra strains, IlvC knockdown strain showed reduced survival at low pH and under low pH+starvation stress conditions. Further, increased expression of IlvC was observed under low pH and starvation stress conditions. Confirmation of a role for IlvC in pH and starvation stress was achieved by developing E. coli BL21(DE3) IlvC knockout, which was defective for growth in M9 minimal medium, but growth could be rescued by isoleucine and valine supplementation. Growth was also restored by complementing with over-expressing constructs of Mtb-Ra and E. coli IlvCs. The E. coli knockout also had a survival deficit at pH=5.5 and 4.5 and was more susceptible to killing at pH=3.0. The biochemical characterization of Mtb-Ra and E. coli IlvCs confirmed that both have NADPH-dependent activity. In conclusion, this study demonstrates the functional complementation of E. coli IlvC by Mtb-Ra IlvC and also suggests that IlvC has a role in tolerance to low pH and starvation stress.


Sign in / Sign up

Export Citation Format

Share Document