scholarly journals Defect of CARD9 Leads to Impaired Accumulation of Gamma Interferon-Producing Memory Phenotype T Cells in Lungs and Increased Susceptibility to Pulmonary Infection with Cryptococcus neoformans

2014 ◽  
Vol 82 (4) ◽  
pp. 1606-1615 ◽  
Author(s):  
Hideki Yamamoto ◽  
Yuri Nakamura ◽  
Ko Sato ◽  
Yurie Takahashi ◽  
Toshiki Nomura ◽  
...  

ABSTRACTCaspase recruitment domain-containing protein 9 (CARD9) is an adaptor molecule signal that is critical for NF-κB activation and is triggered through C-type lectin receptors (CLRs), which are pattern recognition receptors that recognize carbohydrate structures. Previous studies have reported thatCryptococcus neoformans, a fungal pathogen that causes meningoencephalitis in AIDS patients, is recognized through some CLRs, such as mannose receptors or DC-SIGN. However, the role of CARD9 in the host defense against cryptococcal infection remains to be elucidated. In the present study, we analyzed the role of CARD9 in the host defense against pulmonary infection withC. neoformans. CARD9 gene-disrupted (knockout [KO]) mice were highly susceptible to this infection, as shown by the reduced fungal clearance in the infected lungs of CARD9 KO mice, compared to that in wild-type (WT) mice. Gamma interferon (IFN-γ) production was strongly reduced in CARD9 KO mice during the innate-immunity phase of infection. Reduced IFN-γ synthesis was due to impaired accumulation of NK and memory phenotype T cells, which are major sources of IFN-γ innate-immunity-phase production; a reduction in the accumulation of these cells was correlated with reduced CCL4, CCL5, CXCL9, and CXCL10 synthesis. However, differentiation of Th17 cells, but not of Th1 cells, was impaired at the adaptive-immunity phase in CARD9 KO mice compared to WT mice, although there was no significant difference in the infection susceptibility between interleukin 17A (IL-17A) KO and WT mice. These results suggest that CARD9 KO mice are susceptible toC. neoformansinfection probably due to the reduced accumulation of IFN-γ-expressing NK and memory phenotype T cells at the early stage of infection.

mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Jennifer D. Helble ◽  
Rodrigo J. Gonzalez ◽  
Ulrich H. von Andrian ◽  
Michael N. Starnbach

ABSTRACT While there is no effective vaccine against Chlamydia trachomatis infection, previous work has demonstrated the importance of C. trachomatis-specific CD4+ T cells (NR1 T cells) in pathogen clearance. Specifically, NR1 T cells have been shown to be protective in mice, and this protection depends on the host’s ability to sense the cytokine gamma interferon (IFN-γ). However, it is unclear what role NR1 production or sensing of IFN-γ plays in T cell homing to the genital tract or T cell-mediated protection against C. trachomatis. Using two-photon microscopy and flow cytometry, we found that naive wild-type (WT), IFN-γ−/−, and IFN-γR−/− NR1 T cells specifically home to sections in the genital tract that contain C. trachomatis. We also determined that protection against infection requires production of IFN-γ from either NR1 T cells or endogenous cells, further highlighting the importance of IFN-γ in clearing C. trachomatis infection. IMPORTANCE Chlamydia trachomatis is an important mucosal pathogen that is the leading cause of sexually transmitted bacterial infections in the United States. Despite this, there is no vaccine currently available. In order to develop such a vaccine, it is necessary to understand the components of the immune response that can lead to protection against this pathogen. It is well known that antigen-specific CD4+ T cells are critical for Chlamydia clearance, but the contexts in which they are protective or not protective are unknown. Here, we aimed to characterize the importance of gamma interferon production and sensing by T cells and the effects on the immune response to C. trachomatis. Our work here helps to define the contexts in which antigen-specific T cells can be protective, which is critical to our ability to design an effective and protective vaccine against C. trachomatis.


2006 ◽  
Vol 74 (11) ◽  
pp. 6252-6263 ◽  
Author(s):  
Jodie S. Haring ◽  
John T. Harty

ABSTRACT Several lines of evidence from different model systems suggest that gamma interferon (IFN-γ) is an important regulator of T-cell contraction after antigen (Ag)-driven expansion. To specifically investigate the role of IFN-γ in regulating the contraction of Ag-specific CD4 T cells, we infected IFN-γ−/− and IFN-γR1−/− mice with attenuated Listeria monocytogenes and monitored the numbers of Ag-specific CD4 T cells during the expansion, contraction, and memory phases of the immune response to infection. In the absence of IFN-γ or the ligand-binding portion of its receptor, Ag-specific CD4 T cells exhibited normal expansion in numbers, but in both strains of deficient mice there was very little decrease in the number of Ag-specific CD4 T cells even at time points later than day 90 after infection. This significant delay in contraction was not due to prolonged infection, since mice treated with antibiotics to conclusively eliminate infection exhibited the same defect in contraction. In addition to altering the number of Ag-specific CD4 T cells, the absence of IFN-γ signaling also changed the phenotype of cells generated after infection. IFN-γR1−/− Ag-specific CD4 T cells reacquired expression of CD127 more quickly than wild-type cells, and more IFN-γR1−/− CD4 T cells were capable of producing both IFN-γ and interleukin 2 following Ag stimulation. From these data we conclude that IFN-γ regulates the contraction, phenotype, and function of Ag-specific CD4 T cells generated after infection.


2008 ◽  
Vol 76 (8) ◽  
pp. 3628-3631 ◽  
Author(s):  
Sumana Chakravarty ◽  
G. Christian Baldeviano ◽  
Michael G. Overstreet ◽  
Fidel Zavala

ABSTRACT The protective immune response against liver stages of the malaria parasite critically requires CD8+ T cells. Although the nature of the effector mechanism utilized by these cells to repress parasite development remains unclear, a critical role for gamma interferon (IFN-γ) has been widely assumed based on circumstantial evidence. However, the requirement for CD8+ T-cell-mediated IFN-γ production in protective immunity to this pathogen has not been directly tested. In this report, we use an adoptive transfer strategy with circumsporozoite (CS) protein-specific transgenic T cells to examine the role of CD8+ T-cell-derived IFN-γ production in Plasmodium yoelii-infected mice. We show that despite a marginal reduction in the expansion of naive IFN-γ-deficient CS-specific transgenic T cells, their antiparasite activity remains intact. Further, adoptively transferred IFN-γ-deficient CD8+ T cells were as efficient as their wild-type counterparts in limiting parasite growth in naive mice. Taken together, these studies demonstrate that IFN-γ secretion by CS-specific CD8+ T cells is not essential to protect mice against live sporozoite challenge.


2009 ◽  
Vol 77 (9) ◽  
pp. 3909-3918 ◽  
Author(s):  
Xiaoti Guo ◽  
Lisa Barroso ◽  
Steven M. Becker ◽  
David M. Lyerly ◽  
Thomas S. Vedvick ◽  
...  

ABSTRACT We have previously shown that vaccination with purified Entamoeba histolytica Gal/GalNAc lectin or recombinant subunits can protect mice from intestinal amebiasis upon intracecal challenge. In this study, we demonstrated with adoptive-transfer experiments that this lectin vaccine protection is mediated by T cells but not serum. The cell-mediated immune (CMI) response was characterized by significant gamma interferon (IFN-γ), interleukin 12 (IL-12), IL-2, IL-10, and IL-17 production. To move toward a human vaccine, we switched to a recombinant protein and tested a range of adjuvants and routes appropriate for humans. We found that subcutaneous delivery of LecA with IDRI's adjuvant system EM014 elicited a potent Th1-type CMI profile and provided significant protection, as measured by culture negativity (79% efficacy); intranasal immunization with cholera toxin provided 56% efficacy; and alum induced a Th2-type response that protected 62 to 68% of mice. Several antibody and CMI cytokine responses were examined for correlates of protection, and prechallenge IFN-γ+ or IFN-γ-, IL-2-, and tumor necrosis factor alpha-triple-positive CD4 cells in blood were statistically associated with protection. To test the role of IFN-γ in LecA-mediated protection, we neutralized IFN-γ in LecA-immunized mice and found that it abrogated the protection conferred by vaccination. These data demonstrate that CMI is sufficient for vaccine protection from intestinal amebiasis and reveal an important role for IFN-γ, even in the setting of alum.


2018 ◽  
Vol 86 (7) ◽  
pp. e00143-18 ◽  
Author(s):  
Taylor B. Poston ◽  
Catherine M. O'Connell ◽  
Jenna Girardi ◽  
Jeanne E. Sullivan ◽  
Uma M. Nagarajan ◽  
...  

ABSTRACTCD4 T cells and antibody are required for optimal acquired immunity toChlamydia muridarumgenital tract infection, and T cell-mediated gamma interferon (IFN-γ) production is necessary to clear infection in the absence of humoral immunity. However, the role of T cell-independent immune responses during primary infection remains unclear. We investigated this question by inoculating wild-type and immune-deficient mice withC. muridarumCM001, a clonal isolate capable of enhanced extragenital replication. Genital inoculation of wild-type mice resulted in transient dissemination to the lungs and spleen that then was rapidly cleared from these organs. However, CM001 genital infection proved lethal forSTAT1−/−andIFNG−/−mice, in which IFN-γ signaling was absent, and forRag1−/−mice, which lacked T and B cells and in which innate IFN-γ signaling was retained. In contrast, B cell-deficient muMT mice, which can generate a Th1 response, and T cell-deficient mice with intact B cell and innate IFN-γ signaling survived. These data collectively indicate that IFN-γ prevents lethal CM001 dissemination in the absence of T cells and suggests a B cell corequirement. Adoptive transfer of convalescent-phase immune serum but not naive IgM toRag1−/−mice infected with CM001 significantly increased the survival time, while transfer of naive B cells completely rescuedRag1−/−mice from CM001 lethality. Protection was associated with a significant reduction in the lung chlamydial burden of genitally infected mice. These data reveal an important cooperation between T cell-independent B cell responses and innate IFN-γ in chlamydial host defense and suggest that interactions between T cell-independent antibody and IFN-γ are essential for limiting extragenital dissemination.


2001 ◽  
Vol 69 (3) ◽  
pp. 1256-1264 ◽  
Author(s):  
Martin M. Dinges ◽  
Patrick M. Schlievert

ABSTRACT The superantigenic function of toxic shock syndrome toxin 1 (TSST-1) is generally regarded as an important determinant of its lethal effects in humans or experimental animals. This study examined the role of superantigenicity in a BALB/c mouse model of lethal TSST-1-induced hypersensitivity to lipopolysaccharide (LPS). In this model, TSST-1 greatly potentiated both LPS-induced lethality, as well as LPS-induced serum tumor necrosis factor alpha (TNF-α) activity. Although BALB/c-SCID mice were resistant to these LPS enhancement effects of TSST-1, BALB/c-SCID mice reconstituted with T cells were completely susceptible to the enhancement effect of TSST-1 on LPS-induced serum TNF-α. Mice pretreated with cyclosporine (Cs) or neutralizing antibodies against gamma interferon (IFN-γ) did not develop lethal LPS hypersensitivity when injected with TSST-1, and these agents reduced the enhancement effect of TSST-1 on LPS-induced serum TNF-α by 99 and 85%, respectively. Cs pretreatment also completely inhibited the known capacity of TSST-1 to amplify LPS-induced levels of IFN-γ in serum. In contrast, mice given Cs after a priming injection of TSST-1, but before LPS, still exhibited lethal hypersensitivity to LPS. Cs given after TSST-1 also did not inhibit enhancement of LPS-induced serum TNF-α by TSST-1 but inhibited the enhancement effect of TSST-1 on LPS-induced serum IFN-γ by 50%. These experiments support the theory that TSST-1-induced hypersensitivity to LPS is mediated primarily by IFN-γ derived from superantigen-activated T cells.


2007 ◽  
Vol 75 (3) ◽  
pp. 1453-1462 ◽  
Author(s):  
Floyd L. Wormley ◽  
John R. Perfect ◽  
Chad Steele ◽  
Gary M. Cox

ABSTRACT We evaluated cell-mediated immune (CMI) responses in mice given a pulmonary infection with a Cryptococcus neoformans strain engineered to produce the Th1-type cytokine gamma interferon (IFN-γ). Mice given a pulmonary infection with an IFN-γ-producing C. neoformans strain were able to resolve the primary infection and demonstrated complete (100%) protection against a second pulmonary challenge with a pathogenic C. neoformans strain. Pulmonary cytokine analyses showed that Th1-type/proinflammatory cytokine and chemokine expression were significantly higher and Th2-type cytokine expression was significantly lower in mice infected with the IFN-γ-producing C. neoformans strain compared to wild-type-infected mice. This increased pulmonary Th1-type cytokine expression was also associated with significantly lower pulmonary fungal burden and significantly higher pulmonary leukocyte and T-lymphocyte recruitment in mice infected with the IFN-γ-producing C. neoformans strain compared to wild-type-infected mice. Our results demonstrate that pulmonary infection of mice with a C. neoformans strain expressing IFN-γ results in the stimulation of local Th1-type anti-cryptococcal CMI responses and the development of protective host immunity against future pulmonary cryptococcal infections. The use of fungi engineered to produce host cytokines is a novel method to study immune responses to infection and may be useful in developing vaccine strategies in humans.


1998 ◽  
Vol 72 (8) ◽  
pp. 6637-6645 ◽  
Author(s):  
Adrian Bot ◽  
Simona Bot ◽  
Constantin A. Bona

ABSTRACT During secondary immune responses to influenza virus, virus-specific T memory cells are a major source of gamma interferon (IFN-γ). We assessed the contribution of IFN-γ to heterologous protection against the A/WSN/33 (H1N1) virus of wild-type and IFN-γ−/− mice previously immunized with the A/HK/68 (H3N2) virus. The IFN-γ−/− mice displayed significantly reduced survival rates subsequent to a challenge with various doses of the A/WSN/33 virus. This was associated with an impaired ability of the IFN-γ−/− mice to completely clear the pulmonary virus by day 7 after the challenge, although significant reduction of the virus titers was noted. However, the IFN-γ−/− mice developed type A influenza virus cross-reactive cytotoxic T lymphocytes (CTLs) similar to the wild-type mice, as demonstrated by both cytotoxicity and a limiting-dilution assay for the estimation of CTL precursor frequency. The pulmonary recruitment of T cells in IFN-γ−/− mice was not dramatically affected, and the percentage of CD4+ and CD8+ T cells was similar to that of wild-type mice. The T cells from IFN-γ−/− mice did not display a significant switch toward a Th2 profile. Furthermore, the IFN-γ−/− mice retained the ability to mount significant titers of WSN and HK virus-specific hemagglutination-inhibiting antibodies. Together, these results are consistent with a protective role of IFN-γ during the heterologous response against influenza virus independently of the generation and local recruitment of cross-reactive CTLs.


1998 ◽  
Vol 66 (2) ◽  
pp. 830-834 ◽  
Author(s):  
Ricardo E. Tascon ◽  
Evangelos Stavropoulos ◽  
Katalin V. Lukacs ◽  
M. Joseph Colston

ABSTRACT The role of CD8 T cells in controlling Mycobacterium tuberculosis infections in mice was confirmed by comparing the levels of growth of the organism in control, major histocompatibility complex class II knockout, and athymic mice and by transferring T-cell populations into athymic mice. By using donor mice which were incapable of making gamma interferon (IFN-γ), it was shown that IFN-γ production was essential for CD8 cell mediation of protective immunity against M. tuberculosis.


1998 ◽  
Vol 66 (5) ◽  
pp. 1962-1967 ◽  
Author(s):  
Timo L. M. ten Hagen ◽  
Wim van Vianen ◽  
Huub F. J. Savelkoul ◽  
Hubertine Heremans ◽  
Wim A. Buurman ◽  
...  

ABSTRACT We have previously shown that prophylactic administration of the liposome-encapsulated immunomodulating agents muramyl tripeptide phosphatidylethanolamine (MTPPE) and gamma interferon (IFN-γ) results in strongly increased survival of mice from a normally lethal septicemia with Klebsiella pneumoniae. It was anticipated that the treatment acts on macrophages and nonspecifically augments host resistance to various infections. In the present study, we provide evidence for a key role for T cells in host defense potentiation by the liposomal immunomodulators toward K. pneumoniae septicemia. It is shown that both CD4 and CD8 cells are important in immunomodulation, most likely due to production of IFN-γ. Depletion of circulating IFN-γ resulted in strong reduction of the antimicrobial host defense activation. Administration of interleukin-10 resulted in decreased antimicrobial host defense activation by liposomal immunomodulators. Moreover, administration of liposomal immunomodulators was shown to induce predominantly T-helper type 1 (Th1) cell populations in the spleen. These findings indicate that immunomodulation with liposomal MTPPE and IFN-γ favors Th1 and NK cell activation.


Sign in / Sign up

Export Citation Format

Share Document