cd8 cell
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 41)

H-INDEX

39
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261002
Author(s):  
Miko Valori ◽  
Lilja Jansson ◽  
Pentti J. Tienari

Somatic mutations have a central role in cancer but their role in other diseases such as common autoimmune disorders is not clear. Previously we and others have demonstrated that especially CD8+ T cells in blood can harbor persistent somatic mutations in some patients with multiple sclerosis (MS) and rheumatoid arthritis. Here we concentrated on CD8+ cells in more detail and tested (i) how commonly somatic mutations are detectable, (ii) does the overall mutation load differ between MS patients and controls, and (iii) do the somatic mutations accumulate non-randomly in certain genes? We separated peripheral blood CD8+ cells from newly diagnosed relapsing MS patients (n = 21) as well as matched controls (n = 21) and performed next-generation sequencing of the CD8+ cells’ DNA, limiting our search to a custom panel of 2524 immunity and cancer related genes, which enabled us to obtain a median sequencing depth of over 2000x. We discovered nonsynonymous somatic mutations in all MS patients’ and controls’ CD8+ cell DNA samples, with no significant difference in number between the groups (p = 0.60), at a median allelic fraction of 0.5% (range 0.2–8.6%). The mutations showed statistically significant clustering especially to the STAT3 gene, and also enrichment to the SMARCA2, DNMT3A, SOCS1 and PPP3CA genes. Known activating STAT3 mutations were found both in MS patients and controls and overall 1/5 of the mutations were previously described cancer mutations. The detected clustering suggests a selection advantage of the mutated CD8+ clones and calls for further research on possible phenotypic effects.


2021 ◽  
Author(s):  
Dafeng Liu ◽  
Xinyi Zhang ◽  
Ruifeng Zhou ◽  
Lin Cai ◽  
Dongmei Yan ◽  
...  

Abstract Introduction: The dynamic characteristics of glucose metabolism and its risk factors in people living with human immunodeficiency virus (PLWH) accepted primary treatment with the efavirenz (EFV) plus lamivudine (3TC) plus tenofovir (TDF) (EFV+3TC+TDF) regimen are unclear and warrant investigation.Methods: This study was designed using follow-up study. Sixty-one male treatment-naive PLWH were treated with EFV+3TC+TDF regimen for 156 weeks. The glucose metabolism dynamic characteristics, the main risk factors and the differences among the three CD4+ count groups were analyzed.Result: In treatment-naive male PLWH who accepted treatment with the EFV+3TC+TDF regimen for 156 weeks, a continuous increase in the fasting plasma glucose (FPG) level, the rate of impaired fasting glucose (IFG) and the glycosylated hemoglobin (HbA1c) level were found. These changes were not due to insulin resistance but rather to significantly reduced islet β cell function, according to the homeostasis model assessment of β cell function (HOMA-β). Moreover, the lower the baseline CD4+ T cell count was, the higher the FPG level and the lower the HOMA-β value. Furthermore the main risk factors for the FPG levels were the CD3+CD8+ cell count and viral load (VL), and the factors contributing to the HOMA-β values were the alanine aminotransferase (ALT) level, VL and CD3+CD8+ cell count.Conclusions: These findings provide guidance to clinicians who are monitoring FPG levels closely and are concerned about IFG and decreased islet β cell function during ART with the EFV+3TC+TDF regimen for long-term application.


2021 ◽  
Vol 11 ◽  
Author(s):  
Gedmante Radziuviene ◽  
Allan Rasmusson ◽  
Renaldas Augulis ◽  
Ruta Barbora Grineviciute ◽  
Dovile Zilenaite ◽  
...  

Breast cancer (BC) categorized as human epidermal growth factor receptor 2 (HER2) borderline [2+ by immunohistochemistry (IHC 2+)] presents challenges for the testing, frequently obscured by intratumoral heterogeneity (ITH). This leads to difficulties in therapy decisions. We aimed to establish prognostic models of overall survival (OS) of these patients, which take into account spatial aspects of ITH and tumor microenvironment by using hexagonal tiling analytics of digital image analysis (DIA). In particular, we assessed the prognostic value of Immunogradient indicators at the tumor–stroma interface zone (IZ) as a feature of antitumor immune response. Surgical excision samples stained for estrogen receptor (ER), progesterone receptor (PR), Ki67, HER2, and CD8 from 275 patients with HER2 IHC 2+ invasive ductal BC were used in the study. DIA outputs were subsampled by HexT for ITH quantification and tumor microenvironment extraction for Immunogradient indicators. Multiple Cox regression revealed HER2 membrane completeness (HER2 MC) (HR: 0.18, p = 0.0007), its spatial entropy (HR: 0.37, p = 0.0341), and ER contrast (HR: 0.21, p = 0.0449) as independent predictors of better OS, with worse OS predicted by pT status (HR: 6.04, p = 0.0014) in the HER2 non-amplified patients. In the HER2-amplified patients, HER2 MC contrast (HR: 0.35, p = 0.0367) and CEP17 copy number (HR: 0.19, p = 0.0035) were independent predictors of better OS along with worse OS predicted by pN status (HR: 4.75, p = 0.0018). In the non-amplified tumors, three Immunogradient indicators provided the independent prognostic value: CD8 density in the tumor aspect of the IZ and CD8 center of mass were associated with better OS (HR: 0.23, p = 0.0079 and 0.14, p = 0.0014, respectively), and CD8 density variance along the tumor edge predicted worse OS (HR: 9.45, p = 0.0002). Combining these three computational indicators of the CD8 cell spatial distribution within the tumor microenvironment augmented prognostic stratification of the patients. In the HER2-amplified group, CD8 cell density in the tumor aspect of the IZ was the only independent immune response feature to predict better OS (HR: 0.22, p = 0.0047). In conclusion, we present novel prognostic models, based on computational ITH and Immunogradient indicators of the IHC biomarkers, in HER2 IHC 2+ BC patients.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 735-735
Author(s):  
Paula Rodriguez-Marquez ◽  
Maria Erendira Calleja-Cervantes ◽  
Guillermo Serrano ◽  
Maria Luisa Palacios-Berraquero ◽  
Diego Alignani ◽  
...  

Abstract Background: Chimeric Antigen Receptor-modified T cell (CAR-T) therapies have revolutionized cancer immunotherapy, especially in hematological malignancies. Although great results have been achieved during the last years, long-term efficacy is still compromised in some cases and factors behind CAR-T cell disfunction are not fully understood. Recent studies have shown that the control of CAR expression influences CAR-T fitness and antitumoral efficacy 1. Therefore, we hypothesized that CAR density on the membrane of CAR-T cells could directly affect CAR-T cell function. In this study we perform a functional and genomic analysis of FACS-isolated subpopulations of CAR-T cells with different CAR densities (CAR High and CAR Low). Methodology: Second generation CAR-T cells with 4-1BB costimulatory domain targeting BCMA were generated by lentiviral transduction of αCD3/αCD28 activated T cells that were expanded for 12-14 days in the presence of IL-7/IL-15. Phenotypic analyses were performed by flow cytometry before and after coculture with MM cells. Cytotoxic activity and cytokine production were measured by standard procedures. In vivo antitumoral efficacy was evaluated in xenogeneic tumor models in NSG mice. Transcriptomic (RNA-seq) and epigenetic (ATAC-seq) analysis were performed following stablished protocols 2. Single cell analysis was performed using the Chromium Single Cell Immune Profiling solution from 10x Genomic that allows simultaneous analysis of gene expression and paired T-cell receptors from a single cell. Gene Regulatory Network (GRN) analysis was performed using SimiC, a novel computational method that infers regulatory dissimilarities 3. Results: RNA-seq and ATAC-seq analysis revealed completely different profiles between CAR High- and CAR Low-T cells in both CD4 +and CD8 + cell subsets, with >3500 differentially expressed genes (2086 for CD4 + and 1553 for CD8 +) that were related with increased tonic signaling, T cell activation and proliferation in CAR High-T cells. Functional studies at resting state (before antigen encounter) corroborated that CAR High-T cells presented increased tonic signaling, that lead to a higher basal activation and a more differentiated phenotype with skewed presence of CCR7 +/CD45RA +/CXCR3 + T SCM cells. After antigen-driven activation, increased cytotoxicity and cytokine production was observed in CAR High-T cells, that also presented higher percentage of terminally differentiated effector cells (CCR7 -/CD45RA +), along with increased exhaustion (PD1 +/LAG3 +/TIGIT +). This effect was also observed in the infusion products of CARTBCMA-HCB-01 clinical trial for patients with R/R MM (NCT04309981), where products enriched in CAR High-T cells presented increased cytotoxic activity. Although no significant differences were observed in the antitumoral efficacy in vivo, CAR Low-T cells presented increased persistence, suggesting that higher CAR levels could reduce long-term efficacy. Further characterization of CAR-T cells at single cell level (scRNA-seq) showed enrichment of CAR High-T cells in activated CD4 + and exhausted CD8 + cell clusters. The analysis of regulatory dissimilarities driven by different CAR densities with SimiC revealed an increased activity of the regulon associated to NR4A1 transcription factor (a well-known TF driving T cell exhaustion 4) in CAR High-T cells, providing mechanistic insights of the regulatory networks behind differential functionality of CAR High-T cells. Finally, to evaluate the impact of CAR density in the clinical outcome of CAR-T therapies, we developed a gene signature associated to increased CAR density, that was applied to transcriptomic data available from public studies 5. We score the infusion products of several clinical trials testing CTL019 (NCT01029366, NCT01747486 and NCT02640209) and we observed an enrichment on CAR High signature in the products from non-responder patients. Conclusions: Our data demonstrate that CAR density on the membrane of engineered T cells plays important roles in CAR-T activity with a significant impact on clinical outcome. Moreover, the comprehension of regulatory mechanisms driven by CAR densities at the single cell level offer an important tool for the identification of key regulatory factors that could be modulated for the development of improved therapies. Figure 1 Figure 1. Disclosures Rodríguez-Otero: Oncopeptides: Honoraria, Membership on an entity's Board of Directors or advisory committees; Kite: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Regeneron: Membership on an entity's Board of Directors or advisory committees; Abbvie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; GlaxoSmithKline: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS/Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel and other expenses. Paiva: Bristol-Myers Squibb-Celgene, Janssen, and Sanofi: Consultancy; Adaptive, Amgen, Bristol-Myers Squibb-Celgene, Janssen, Kite Pharma, Sanofi and Takeda: Honoraria; Celgene, EngMab, Roche, Sanofi, Takeda: Research Funding. San-Miguel: AbbVie, Amgen, Bristol-Myers Squibb, Celgene, GlaxoSmithKline, Janssen, Karyopharm, Merck Sharpe & Dohme, Novartis, Regeneron, Roche, Sanofi, SecuraBio, Takeda: Consultancy, Other: Advisory board. Prósper: Oryzon: Honoraria; Janssen: Honoraria; BMS-Celgene: Honoraria, Research Funding.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A859-A859
Author(s):  
Benjamin Glass ◽  
S Adam Stanford-Moore ◽  
Diksha Meghwal ◽  
Nishant Agrawal ◽  
Mary Lin ◽  
...  

BackgroundAn accurate histological characterization of immune cells in the tumor microenvironment is essential for developing novel immune oncology targeted therapies and can assist in guiding patient treatment decisions. However, immune phenotyping is subject to challenges of manual scoring and inter-pathologist scoring variability. To support pathologist-scored immune phenotyping across tumor types, we are developing machine learning (ML)-based models that can identify and quantify CD8+ lymphocytes within the stromal and parenchyma regions of tumors from non-small cell lung cancer, renal cell carcinoma, breast cancer, gastric cancer, head and neck squamous cell carcinoma, urothelial carcinoma, and melanoma. Here, we focus on the ML model for melanoma showing recent results for ML-based identification and quantification of CD8+ lymphocytes and concordance with manual pathologic assessment in data derived from clinical trials.MethodsML algorithms were developed to quantify CD8+ lymphocytes in melanoma using 200 samples from a commercial dataset containing both primary and metastatic melanoma cases. Models were trained using the PathAI research platform on digitized whole slide images (WSI) stained for CD8 using clone C8/144b (Dako), and annotations were provided by the PathAI network of expert pathologists. Training included identification of slide artifacts, parenchyma, cancer stroma, and necrosis, as well as CD8+ lymphocytes and other CD8– cell types. Examples of melanin, such as pigmented macrophages, were added to non-CD8+ cell types. To evaluate the performance of the ML model, model-predicted CD8+ counts were compared to a consensus count from five independent pathologists for representative regions (“frames”) using the Pearson correlation. This was done in 112 held-out test frames from 90 WSI baseline samples from three clinical trials of immunotherapy treatment in individuals with metastatic melanoma. Inter-pathologist agreement among the five pathologists was also calculated.ResultsML-based quantitation of CD8 positivity in lymphocytes showed high concordance with manual pathologist consensus counts. In frames validation of CD8+ counts on the test set of WSI, there was high correlation between the ML model and pathologist consensus counts (r=0.92 [95% CI 0.88–0.94]). This correlation was comparable to the agreement among the five expert pathologists (r=0.88 [95% CI 0.85–0.91]).ConclusionsML model-predicted CD8+ cell counts are highly concordant with pathologist scores on WSI samples from melanoma-focused clinical trials. These data demonstrate the capability of AI-powered digital pathology for accurate and reproducible quantitation of CD8+ lymphocytes in clinical trial samples, contributing to improved evaluation of the tumor microenvironment and targeted development of therapeutics.


Author(s):  
Samriti Gupta ◽  
Anita Mandal ◽  
Kana Jat ◽  
Sushil Kabra

STAT5B protein is an important component of signalling pathway for growth hormone and IL-2 mediated responses. Mutation in STAT5B gene has been reported to be associated with growth hormone insensitivity, immunodeficiency and autoimmunity. Chronic pulmonary involvement is also one component of the disorder. We describe a case an adolescent girl who suffered with poor growth and loose stools since 1 year of age and was subsequently diagnosed with celiac disease and hypothyroidism. She developed features of interstitial lung disease (ILD) which were progressively worsening. Common causes of ILD were ruled out on investigations. She underwent whole exome sequencing and found to be positive for a novel mutation in STAT5B gene on exon 16. On further evaluation, she had growth hormone insensitivity and CD8 cell deficiency. This case highlights that in a child with chronic pulmonary involvement with features suggestive of growth hormone insensitivity, immunodeficiency and autoimmunity, evaluation for STAT5B mutation should be thought of.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Mariabeatrice Bertolani ◽  
Eleonora Rodighiero ◽  
Maria Beatrice De Felici del Giudice ◽  
Torello Lotti ◽  
Claudio Feliciani ◽  
...  

Vitiligo is an acquired pigmentary disorder afflicting 0.5-2% of the world population for both sexes and all races with a capricious and unpredictable course. It has a complex etiology and varies in its manifestation, progression and response to treatment. Even if the precise aetiology and pathobiology of the disease are complex and still debated, recent evidence supports that vitiligo is a T CD8+ cell-mediated autoimmune disease triggered by oxidative stress. To date no clinical, biological and histological criteria allow us to establish the prognosis with certainty. The choice of the best therapy for adult and childhood vitiligo is based on various factors, such as the patient’s age, psychological condition and expectations, distribution and extension of skin lesions, type of vitiligo (stable or not) and availability and cost of therapeutic options. Since vitiligo has a deep psychological impact on patients and their quality of life, treating the disease is very important. As dermatologists, we have important goals in the treatment of vitiligo patients: stabilization of the disease progression, repigmentation of the lesions and especially the persistence of the aforementioned repigmentation. Although several medical and surgical therapeutic options have been proposed, no definite cure has yet been developed and the long-term persistence of repigmentation is unpredictable. We review the different therapeutic options with particular attention on the recurrence rate.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Mario Caruffo ◽  
Sonia Vidal ◽  
Leonardo Santis ◽  
Daniela Siel ◽  
Oliver Pérez ◽  
...  

AbstractSalmonid rickettsial septicaemia (SRS) is a contagious disease caused by Piscirickettsia salmonis, an intracellular bacterium. SRS causes an estimated economic loss of $700 million USD to the Chilean industry annually. Vaccination and antibiotic therapy are the primary prophylactic and control measures used against SRS. Unfortunately, commercially available SRS vaccines have not been shown to have a significant effect on reducing mortality. Most vaccines contain whole inactivated bacteria which results in decreased efficacy due to the limited ability of the vaccine to evoke a cellular mediated immune response that can eliminate the pathogen or infected cells. In addition, SRS vaccine efficacy has been evaluated primarily with Salmo salar (Atlantic salmon). Vaccine studies using Oncorhynchus mykiss (rainbow trout) are scarce, despite SRS being the leading cause of infectious death for this species. In this study, we evaluate an injectable vaccine based on P. salmonis proteoliposome; describing the vaccine security profile, capacity to induce specific anti-P. salmonis IgM and gene expression of immune markers related to T CD8 cell-mediated immunity. Efficacy was determined by experimental challenge with P. salmonis intraperitoneally. Our findings indicate that a P. salmonis proteoliposome-based vaccine is able to protect O. mykiss against challenge with a P. salmonis Chilean isolate and causes a specific antibody response. The transcriptional profile suggests that the vaccine is capable of inducing cellular immunity. This study provides new insights into O. mykiss protection and the immune response induced by a P. salmonis proteoliposome-based vaccine.


Sign in / Sign up

Export Citation Format

Share Document