scholarly journals Contribution of the pst-phoU Operon to Cell Adherence by Atypical Enteropathogenic Escherichia coli and Virulence of Citrobacter rodentium

2009 ◽  
Vol 77 (5) ◽  
pp. 1936-1944 ◽  
Author(s):  
Catherine Cheng ◽  
Sharon M. Tennant ◽  
Kristy I. Azzopardi ◽  
Vicki Bennett-Wood ◽  
Elizabeth L. Hartland ◽  
...  

ABSTRACT Strains of enteropathogenic Escherichia coli (EPEC) generally employ the adhesins bundle-forming pili (Bfp) and intimin to colonize the intestine. Atypical EPEC strains possess intimin but are negative for Bfp and, yet, are able to cause disease. To identify alternative adhesins to Bfp in atypical EPEC, we constructed a transposon mutant library of atypical EPEC strain E128012 (serotype O114:H2) using TnphoA. Six mutants that had lost the ability to adhere to HEp-2 cells were identified, and in all six mutants TnphoA had inserted into the pstSCAB-phoU (Pst) operon. To determine if the Pst operon is required for adherence, we used site-directed mutagenesis to construct a pstCA mutant of E128012. The resultant mutant showed a reduced ability to adhere to HEp-2 cells and T84 intestinal epithelial cells, which was restored by trans-complementation with intact pstCA. To determine if pst contributes to bacterial colonization in vivo, a pstCA mutation was made in the EPEC-like murine pathogen, Citrobacter rodentium. C57BL/6 mice infected perorally with the pstCA mutant of C. rodentium excreted significantly lower numbers of C. rodentium than those given the wild-type strain. Moreover, colonic hyperplasia and diarrhea, which are features of infections with C. rodentium, were not observed in mice infected with the pstCA mutant but did occur in mice given the trans-complemented mutant. As mutations in pst genes generally lead to constitutive expression of the Pho regulon, our findings suggested that the Pho regulon may contribute to the reduced virulence of the pstCA mutants. To investigate this, we inactivated phoB in the pstCA mutants of EPEC E128012 and C. rodentium and found that the phoB mutation restored the adherent phenotype of both mutant strains. These results demonstrate that Pst contributes to the virulence of atypical EPEC and C. rodentium, probably by causing increased expression of an unidentified, Pho-regulated adhesin.

2012 ◽  
Vol 195-196 ◽  
pp. 407-411
Author(s):  
Mu Qing Qiu

In order to develop an efficient site-directed mutagenesis method in vivo, the tests were tested by the following methods. The methods that the fragment knockouted ompR gene was constructed through overlapping PCR, digested by Notand Sal, ligated to plasmid pKOV were applied. The recombination plasmid was transformed into Escherichia coli WMC-001 strain, integrated into the genomic DNA through two step homologous recombination. The Escherichia coli WMC-001/ompR-mutant was obtained due to gene replacement. The fragment of the mutant ompR gene was amplified through overlapping PCR, cloned into pKOV vector. The recombinant plasmid was introduced into Escherichia coli WMC-001/ompR-mutant. The Escherichia coli WMC-001/ompR mutant was also obtained due to gene replacement. Results: The site-directed mutagenesis has been successfully constructed in the ompR gene by sequencing. Conclusion: The method is effective for construction of gene site-directed mutagenesis in vivo.


2020 ◽  
Vol 48 (8) ◽  
pp. 4507-4520 ◽  
Author(s):  
Smriti Pandey ◽  
Chandra M Gravel ◽  
Oliver M Stockert ◽  
Clara D Wang ◽  
Courtney L Hegner ◽  
...  

Abstract The FinO-domain-protein ProQ is an RNA-binding protein that has been known to play a role in osmoregulation in proteobacteria. Recently, ProQ has been shown to act as a global RNA-binding protein in Salmonella and Escherichia coli, binding to dozens of small RNAs (sRNAs) and messenger RNAs (mRNAs) to regulate mRNA-expression levels through interactions with both 5′ and 3′ untranslated regions (UTRs). Despite excitement around ProQ as a novel global RNA-binding protein, and its potential to serve as a matchmaking RNA chaperone, significant gaps remain in our understanding of the molecular mechanisms ProQ uses to interact with RNA. In order to apply the tools of molecular genetics to this question, we have adapted a bacterial three-hybrid (B3H) assay to detect ProQ’s interactions with target RNAs. Using domain truncations, site-directed mutagenesis and an unbiased forward genetic screen, we have identified a group of highly conserved residues on ProQ’s NTD as the primary face for in vivo recognition of two RNAs, and propose that the NTD structure serves as an electrostatic scaffold to recognize the shape of an RNA duplex.


2008 ◽  
Vol 76 (6) ◽  
pp. 2594-2602 ◽  
Author(s):  
Tom N. McNeilly ◽  
Stuart W. Naylor ◽  
Arvind Mahajan ◽  
Mairi C. Mitchell ◽  
Sean McAteer ◽  
...  

ABSTRACT Escherichia coli O157:H7 is an important pathogen of humans. Cattle are most frequently identified as the primary source of infection, and therefore, reduction in E. coli O157:H7 prevalence in cattle by vaccination represents an attractive strategy for reducing the incidence of human disease. H7 flagella have been implicated in intestinal-epithelial colonization of E. coli O157:H7 and may represent a useful target for vaccination. In this study, calves were immunized either systemically with H7 flagellin by intramuscular injection or mucosally via the rectum with either H7 or H7 incorporated into poly(dl-lactide-co-glycolide) microparticles (PLG:H7). Systemic immunization resulted in high levels of flagellin-specific immunoglobulin G (IgG) and IgA in both serum and nasal secretions and detectable levels of both antibody isotypes in rectal secretions. Rectal administration of flagellin resulted in levels of rectal IgA similar to those by the intramuscular route but failed to induce any other antibody response, whereas rectal immunization with PLG:H7 failed to induce any H7-specific antibodies. Following subsequent oral challenge with E. coli O157:H7, reduced colonization rates and delayed peak bacterial shedding were observed in the intramuscularly immunized group compared to nonvaccinated calves, but no reduction in total bacterial shedding occurred. Rectal immunization with either H7 or PLG:H7 had no effect on subsequent bacterial colonization or shedding. Furthermore, purified H7-specific IgA and IgG from intramuscularly immunized calves were shown to reduce intestinal-epithelial binding in vitro. These results indicate that H7 flagellin may be a useful component in a systemic vaccine to reduce E. coli O157:H7 colonization in cattle.


2015 ◽  
Vol 26 (12) ◽  
pp. 2252-2262 ◽  
Author(s):  
Bejan J. Saeedi ◽  
Daniel J. Kao ◽  
David A. Kitzenberg ◽  
Evgenia Dobrinskikh ◽  
Kayla D. Schwisow ◽  
...  

Intestinal epithelial cells (IECs) are exposed to profound fluctuations in oxygen tension and have evolved adaptive transcriptional responses to a low-oxygen environment. These adaptations are mediated primarily through the hypoxia-inducible factor (HIF) complex. Given the central role of the IEC in barrier function, we sought to determine whether HIF influenced epithelial tight junction (TJ) structure and function. Initial studies revealed that short hairpin RNA–mediated depletion of the HIF1β in T84 cells resulted in profound defects in barrier and nonuniform, undulating TJ morphology. Global HIF1α chromatin immunoprecipitation (ChIP) analysis identified claudin-1 (CLDN1) as a prominent HIF target gene. Analysis of HIF1β-deficient IEC revealed significantly reduced levels of CLDN1. Overexpression of CLDN1 in HIF1β-deficient cells resulted in resolution of morphological abnormalities and restoration of barrier function. ChIP and site-directed mutagenesis revealed prominent hypoxia response elements in the CLDN1 promoter region. Subsequent in vivo analysis revealed the importance of HIF-mediated CLDN1 expression during experimental colitis. These results identify a critical link between HIF and specific tight junction function, providing important insight into mechanisms of HIF-regulated epithelial homeostasis.


2005 ◽  
Vol 187 (5) ◽  
pp. 1724-1731 ◽  
Author(s):  
K. Derek Weber ◽  
Owen D. Vincent ◽  
Patricia J. Kiley

ABSTRACT The global anaerobic regulator FNR is a DNA binding protein that activates transcription of genes required for anaerobic metabolism in Escherichia coli through interactions with RNA polymerase (RNAP). Alanine-scanning mutagenesis of FNR amino acid residues 181 to 193 of FNR was utilized to determine which amino acid side chains are required for transcription of both class II and class I promoters. In vivo assays of FNR function demonstrated that a core of residues (F181, R184, S187, and R189) was required for efficient activation of class II promoters, while at a class I promoter, FF(−61.5), only S187 and R189 were critical for FNR activation. Site-directed mutagenesis of positions 184, 187, and 189 revealed that the positive charge contributes to the function of the side chain at positions 184 and 189 while the serine hydroxyl is critical for the function of position 187. Subsequent analysis of the carboxy-terminal domain of the α subunit (αCTD) of RNAP, using an alanine library in single copy, revealed that in addition to previously characterized side chains (D305, R317, and L318), E286 and E288 contributed to FNR activation of both class II and class I promoters, suggesting that αCTD region 285 to 288 also participates in activation by FNR. In conclusion, this study demonstrates that multiple side chains within region 181 to 192 are required for FNR activation and the surface of αCTD required for FNR activation is more extensive than previously observed.


2010 ◽  
Vol 78 (12) ◽  
pp. 5324-5331 ◽  
Author(s):  
Nicolas Bertrand ◽  
Sébastien Houle ◽  
Guillaume LeBihan ◽  
Édith Poirier ◽  
Charles M. Dozois ◽  
...  

ABSTRACT Avian pathogenic Escherichia coli (APEC) strains are associated with respiratory infections, septicemia, cellulitis, peritonitis, and other conditions, since colibacillosis manifests in many ways. The Pho regulon is jointly controlled by the two-component regulatory system PhoBR and by the phosphate-specific transport (Pst) system. To determine the specific roles of the PhoBR regulon and the Pst system in the pathogenesis of the APEC O78 strain χ7122, different phoBR and pst mutant strains were tested in vivo in chickens and in vitro for virulence traits. Mutations resulting in constitutive activation of the Pho regulon rendered strains more sensitive than the wild type to hydrogen peroxide and to the bactericidal effects of rabbit serum. In addition, production of type 1 fimbriae was also impaired in these strains. Using a chicken competitive infection model, all PhoB constitutive mutants were outcompeted by the wild-type parent, including strains containing a functional Pst system. Cumulative inactivation of the Pst system and the PhoB regulator resulted in a restoration of virulence. In addition, loss of the PhoB regulator alone did not affect virulence in the chicken infection model. Interestingly, the level of attenuation of the mutant strains correlated directly with the level of activation of the Pho regulon. Overall, results indicate that activation of the Pho regulon rather than phosphate transport by the Pst system plays a major role in the attenuation of the APEC O78 strain χ7122.


2003 ◽  
Vol 185 (4) ◽  
pp. 1167-1173 ◽  
Author(s):  
Monica Ekberg ◽  
Pernilla Birgander ◽  
Britt-Marie Sjöberg

ABSTRACT Ribonucleotide reductase (RNR) catalyzes the essential production of deoxyribonucleotides in all living cells. In this study we have established a sensitive in vivo assay to study the activity of RNR in aerobic Escherichia coli cells. The method is based on the complementation of a chromosomally encoded nonfunctional RNR with plasmid-encoded RNR. This assay can be used to determine in vivo activity of RNR mutants with activities beyond the detection limits of traditional in vitro assays. E. coli RNR is composed of two homodimeric proteins, R1 and R2. The R2 protein contains a stable tyrosyl radical essential for the catalysis that takes place at the R1 active site. The three-dimensional structures of both proteins, phylogenetic studies, and site-directed mutagenesis experiments show that the radical is transferred from the R2 protein to the active site in the R1 protein via a radical transfer pathway composed of at least nine conserved amino acid residues. Using the new assay we determined the in vivo activity of mutants affecting the radical transfer pathway in RNR and identified some residual radical transfer activity in two mutant R2 constructs (D237N and W48Y) that had previously been classified as negative for enzyme activity. In addition, we show that the R2 mutant Y356W is completely inactive, in sharp contrast to what has previously been observed for the corresponding mutation in the mouse R2 enzyme.


Sign in / Sign up

Export Citation Format

Share Document